These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 2271576)
1. Kinetic isotope effect studies on milk xanthine oxidase and on chicken liver xanthine dehydrogenase. D'Ardenne SC; Edmondson DE Biochemistry; 1990 Sep; 29(38):9046-52. PubMed ID: 2271576 [TBL] [Abstract][Full Text] [Related]
2. Kinetic isotope effects and electron transfer in the reduction of xanthine oxidoreductase with 4-hydroxypyrimidine. A comparison between oxidase and dehydrogenase forms. Harris CM; Massey V J Biol Chem; 1997 Sep; 272(36):22514-25. PubMed ID: 9278404 [TBL] [Abstract][Full Text] [Related]
3. Kinetic comparison of reduction and intramolecular electron transfer in milk xanthine oxidase and chicken liver xanthine dehydrogenase by laser flash photolysis. Walker MC; Hazzard JT; Tollin G; Edmondson DE Biochemistry; 1991 Jun; 30(24):5912-7. PubMed ID: 2043632 [TBL] [Abstract][Full Text] [Related]
4. Structure-activity relationships in the oxidation of para-substituted benzylamine analogues by recombinant human liver monoamine oxidase A. Miller JR; Edmondson DE Biochemistry; 1999 Oct; 38(41):13670-83. PubMed ID: 10521274 [TBL] [Abstract][Full Text] [Related]
5. The conversion from the dehydrogenase type to the oxidase type of rat liver xanthine dehydrogenase by modification of cysteine residues with fluorodinitrobenzene. Nishino T; Nishino T J Biol Chem; 1997 Nov; 272(47):29859-64. PubMed ID: 9368059 [TBL] [Abstract][Full Text] [Related]
6. Studies by electron-paramagnetic-resonance spectroscopy and stopped-flow spectrophotometry on the mechanism of action of turkey liver xanthine dehydrogenase. Barber MJ; Bray RC; Lowe DJ; Coughlan MP Biochem J; 1976 Feb; 153(2):297-307. PubMed ID: 179533 [TBL] [Abstract][Full Text] [Related]
7. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [Abstract][Full Text] [Related]
8. [Comparative study of chicken liver xanthine dehydrogenase and bovine liver xanthine oxidase. dehydrogenase activity of xanthine oxidase (author's transl)]. Canela E; Bozal J Rev Esp Fisiol; 1979 Mar; 35(1):51-62. PubMed ID: 37557 [TBL] [Abstract][Full Text] [Related]
9. Differences in protein structure of xanthine dehydrogenase and xanthine oxidase revealed by reconstitution with flavin active site probes. Massey V; Schopfer LM; Nishino T; Nishino T J Biol Chem; 1989 Jun; 264(18):10567-73. PubMed ID: 2732238 [TBL] [Abstract][Full Text] [Related]
10. Kinetics and stability of immobilized chicken liver xanthine dehydrogenase. Tramper J; Angelino SA; Müller F; van der Plas HC Biotechnol Bioeng; 1979 Oct; 21(10):1767-86. PubMed ID: 486718 [TBL] [Abstract][Full Text] [Related]
11. Isotopic probes yield microscopic constants: separation of binding energy from catalytic efficiency in the bovine plasma amine oxidase reaction. Palcic MM; Klinman JP Biochemistry; 1983 Dec; 22(25):5957-66. PubMed ID: 6661419 [TBL] [Abstract][Full Text] [Related]
12. Purification of rat liver xanthine oxidase and xanthine dehydrogenase by affinity chromatography on benzamidine-sepharose. McManaman JL; Shellman V; Wright RM; Repine JE Arch Biochem Biophys; 1996 Aug; 332(1):135-41. PubMed ID: 8806718 [TBL] [Abstract][Full Text] [Related]
13. The reductive half-reaction of xanthine dehydrogenase from Rhodobacter capsulatus: the role of Glu232 in catalysis. Hall J; Reschke S; Cao H; Leimkühler S; Hille R J Biol Chem; 2014 Nov; 289(46):32121-32130. PubMed ID: 25258317 [TBL] [Abstract][Full Text] [Related]
14. The oxidative half-reaction of xanthine dehydrogenase with NAD; reaction kinetics and steady-state mechanism. Harris CM; Massey V J Biol Chem; 1997 Nov; 272(45):28335-41. PubMed ID: 9353290 [TBL] [Abstract][Full Text] [Related]
15. Probes of hydrogen tunneling with horse liver alcohol dehydrogenase at subzero temperatures. Tsai S; Klinman JP Biochemistry; 2001 Feb; 40(7):2303-11. PubMed ID: 11329300 [TBL] [Abstract][Full Text] [Related]
16. Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases. Wahl RC; Rajagopalan KV J Biol Chem; 1982 Feb; 257(3):1354-9. PubMed ID: 6276383 [TBL] [Abstract][Full Text] [Related]
17. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase. Turner NA; Doyle WA; Ventom AM; Bray RC Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219 [TBL] [Abstract][Full Text] [Related]
18. Xanthine oxidase and xanthine dehydrogenase from an estivating land snail. Hermes-Lima M; Storey KB Z Naturforsch C J Biosci; 1995; 50(9-10):685-94. PubMed ID: 8579686 [TBL] [Abstract][Full Text] [Related]
19. Oxidation--reduction potentials of turkey liver xanthine dehydrogenase and the origins of oxidase and dehydrogenase behaviour in molybdenum-containing hydroxylases. Barber MJ; Bray RC; Cammack R; Coughlan MP Biochem J; 1977 May; 163(2):279-89. PubMed ID: 869927 [TBL] [Abstract][Full Text] [Related]
20. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies. Howes BD; Bray RC; Richards RL; Turner NA; Bennett B; Lowe DJ Biochemistry; 1996 Feb; 35(5):1432-43. PubMed ID: 8634273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]