These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 22715880)

  • 41. Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing.
    Lazarevic V; Schöne C; Heine M; Gundelfinger ED; Fejtova A
    J Neurosci; 2011 Jul; 31(28):10189-200. PubMed ID: 21752995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Matching of pre- and postsynaptic specializations during synaptogenesis.
    Lardi-Studler B; Fritschy JM
    Neuroscientist; 2007 Apr; 13(2):115-26. PubMed ID: 17404372
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of structural organization of protein-synthesizing machinery from prokaryotes to eukaryotes.
    Ryazanov AG; Ovchinnikov LP; Spirin AS
    Biosystems; 1987; 20(3):275-88. PubMed ID: 3113506
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms.
    Rathore OS; Faustino A; PrudĂȘncio P; Van Damme P; Cox CJ; Martinho RG
    Sci Rep; 2016 Feb; 6():21304. PubMed ID: 26861501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation.
    Frank RA; Komiyama NH; Ryan TJ; Zhu F; O'Dell TJ; Grant SG
    Nat Commun; 2016 Apr; 7():11264. PubMed ID: 27117477
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolutionary origin of eukaryotic cells.
    Kostianovsky M
    Ultrastruct Pathol; 2000; 24(2):59-66. PubMed ID: 10808550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neurogenomics and the role of a large mutational target on rapid behavioral change.
    Stanley CE; Kulathinal RJ
    Biol Direct; 2016 Nov; 11(1):60. PubMed ID: 27825385
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CDC42EP4, a perisynaptic scaffold protein in Bergmann glia, is required for glutamatergic tripartite synapse configuration.
    Ageta-Ishihara N; Konno K; Yamazaki M; Abe M; Sakimura K; Watanabe M; Kinoshita M
    Neurochem Int; 2018 Oct; 119():190-198. PubMed ID: 29330091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The postsynaptic density.
    Boeckers TM
    Cell Tissue Res; 2006 Nov; 326(2):409-22. PubMed ID: 16865346
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Subcellular stoichiogenomics reveal cell evolution and electrostatic interaction mechanisms in cytoskeleton.
    Zhang YJ; Zhu C; Ding Y; Yan ZW; Li GH; Lan Y; Wen JF; Chen B
    BMC Genomics; 2018 Jun; 19(1):469. PubMed ID: 29914356
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synapse-associated protein-97 isoform-specific regulation of surface AMPA receptors and synaptic function in cultured neurons.
    Rumbaugh G; Sia GM; Garner CC; Huganir RL
    J Neurosci; 2003 Jun; 23(11):4567-76. PubMed ID: 12805297
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Roles of postsynaptic density-95/synapse-associated protein 90 and its interacting proteins in the organization of synapses.
    Hata Y; Takai Y
    Cell Mol Life Sci; 1999 Oct; 56(5-6):461-72. PubMed ID: 11212298
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Postsynaptic density scaffolding proteins at excitatory synapse and disorders of synaptic plasticity: implications for human behavior pathologies.
    de Bartolomeis A; Fiore G
    Int Rev Neurobiol; 2004; 59():221-54. PubMed ID: 15006490
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.
    Gnad F; Forner F; Zielinska DF; Birney E; Gunawardena J; Mann M
    Mol Cell Proteomics; 2010 Dec; 9(12):2642-53. PubMed ID: 20688971
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proline-rich synapse-associated protein-1 and 2 (ProSAP1/Shank2 and ProSAP2/Shank3)-scaffolding proteins are also present in postsynaptic specializations of the peripheral nervous system.
    Raab M; Boeckers TM; Neuhuber WL
    Neuroscience; 2010 Dec; 171(2):421-33. PubMed ID: 20800661
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assembly and plasticity of the glutamatergic postsynaptic specialization.
    McGee AW; Bredt DS
    Curr Opin Neurobiol; 2003 Feb; 13(1):111-8. PubMed ID: 12593989
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intracellular protein complexes involved in synapse assembly in presynaptic neurons.
    Han KA; Um JW; Ko J
    Adv Protein Chem Struct Biol; 2019; 116():347-373. PubMed ID: 31036296
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Shared strategies in gene organization among prokaryotes and eukaryotes.
    Lawrence JG
    Cell; 2002 Aug; 110(4):407-13. PubMed ID: 12202031
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporally distinct demands for classic cadherins in synapse formation and maturation.
    Bozdagi O; Valcin M; Poskanzer K; Tanaka H; Benson DL
    Mol Cell Neurosci; 2004 Dec; 27(4):509-21. PubMed ID: 15555928
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell.
    Kienle N; Kloepper TH; Fasshauer D
    BMC Evol Biol; 2016 Oct; 16(1):215. PubMed ID: 27756227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.