BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22715926)

  • 21. Uncoupling substrate transport from ATP hydrolysis in the Escherichia coli maltose transporter.
    Cui J; Qasim S; Davidson AL
    J Biol Chem; 2010 Dec; 285(51):39986-93. PubMed ID: 20959448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleotide-free MalK drives the transition of the maltose transporter to the inward-facing conformation.
    Bao H; Duong F
    J Biol Chem; 2014 Apr; 289(14):9844-51. PubMed ID: 24526688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter.
    Orelle C; Ayvaz T; Everly RM; Klug CS; Davidson AL
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12837-42. PubMed ID: 18725638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation.
    Boos W; Shuman H
    Microbiol Mol Biol Rev; 1998 Mar; 62(1):204-29. PubMed ID: 9529892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of the maltose transporter in a pretranslocation intermediate state.
    Oldham ML; Chen J
    Science; 2011 Jun; 332(6034):1202-5. PubMed ID: 21566157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. External-pH-dependent expression of the maltose regulon and ompF gene in Escherichia coli is affected by the level of glycerol kinase, encoded by glpK.
    Chagneau C; Heyde M; Alonso S; Portalier R; Laloi P
    J Bacteriol; 2001 Oct; 183(19):5675-83. PubMed ID: 11544231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Aes protein directly controls the activity of MalT, the central transcriptional activator of the Escherichia coli maltose regulon.
    Joly N; Danot O; Schlegel A; Boos W; Richet E
    J Biol Chem; 2002 May; 277(19):16606-13. PubMed ID: 11867639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Mathematical Model for the Kinetics of the MalFGK[Formula: see text] Maltose Transporter.
    Hiller RM; von Kügelgen J; Bao H; Van Hoa FD; Cytrynbaum EN
    Bull Math Biol; 2020 May; 82(5):62. PubMed ID: 32415547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transmembrane signaling in the maltose ABC transporter MalFGK2-E: periplasmic MalF-P2 loop communicates substrate availability to the ATP-bound MalK dimer.
    Grote M; Polyhach Y; Jeschke G; Steinhoff HJ; Schneider E; Bordignon E
    J Biol Chem; 2009 Jun; 284(26):17521-6. PubMed ID: 19395376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of an auto-regulation mechanism for the maltose ABC transporter MalFGK2.
    Bao H; Duong F
    PLoS One; 2012; 7(4):e34836. PubMed ID: 22529943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of the trehalose system in regulating the maltose regulon of Escherichia coli.
    Decker K; Gerhardt F; Boos W
    Mol Microbiol; 1999 May; 32(4):777-88. PubMed ID: 10361281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An integrated transport mechanism of the maltose ABC importer.
    Mächtel R; Narducci A; Griffith DA; Cordes T; Orelle C
    Res Microbiol; 2019; 170(8):321-337. PubMed ID: 31560984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Network regulation of the Escherichia coli maltose system.
    Schlegel A; Böhm A; Lee SJ; Peist R; Decker K; Boos W
    J Mol Microbiol Biotechnol; 2002 May; 4(3):301-7. PubMed ID: 11931562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro interaction between components of the inner membrane complex of the maltose ABC transporter of Escherichia coli: modulation by ATP.
    Mourez M; Jéhanno M; Schneider E; Dassa E
    Mol Microbiol; 1998 Oct; 30(2):353-63. PubMed ID: 9791180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The maltose ATP-binding cassette transporter in the 21st century--towards a structural dynamic perspective on its mode of action.
    Bordignon E; Grote M; Schneider E
    Mol Microbiol; 2010 Sep; 77(6):1354-66. PubMed ID: 20659291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the effect exerted by extracellular pH on the maltose regulon in Escherichia coli K-12.
    Alonzo S; Heyde M; Laloi P; Portalier R
    Microbiology (Reading); 1998 Dec; 144 ( Pt 12)():3317-3325. PubMed ID: 9884223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disulfide cross-linking reveals a site of stable interaction between C-terminal regulatory domains of the two MalK subunits in the maltose transport complex.
    Samanta S; Ayvaz T; Reyes M; Shuman HA; Chen J; Davidson AL
    J Biol Chem; 2003 Sep; 278(37):35265-71. PubMed ID: 12813052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How integration of positive and negative regulatory signals by a STAND signaling protein depends on ATP hydrolysis.
    Marquenet E; Richet E
    Mol Cell; 2007 Oct; 28(2):187-99. PubMed ID: 17964259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional reconstitution of a maltose ATP-binding cassette transporter from the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius.
    Scheffel F; Fleischer R; Schneider E
    Biochim Biophys Acta; 2004 May; 1656(1):57-65. PubMed ID: 15136159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulation of the maltose transporter ATPase by unliganded maltose binding protein.
    Gould AD; Telmer PG; Shilton BH
    Biochemistry; 2009 Aug; 48(33):8051-61. PubMed ID: 19630440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.