BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22715932)

  • 1. Treponema denticola superoxide reductase: in vivo role, in vitro reactivities, and a novel [Fe(Cys)(4)] site.
    Caranto JD; Gebhardt LL; MacGowan CE; Limberger RJ; Kurtz DM
    Biochemistry; 2012 Jul; 51(28):5601-10. PubMed ID: 22715932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An engineered two-iron superoxide reductase lacking the [Fe(SCys)4] site retains its catalytic properties in vitro and in vivo.
    Emerson JP; Cabelli DE; Kurtz DM
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3802-7. PubMed ID: 12637682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic characterization of the [Fe(His)(4)(Cys)] site in 2Fe-superoxide reductase from Desulfovibrio vulgaris.
    Clay MD; Emerson JP; Coulter ED; Kurtz DM; Johnson MK
    J Biol Inorg Chem; 2003 Jul; 8(6):671-82. PubMed ID: 12764688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational H-bonding modulation of the iron active site cysteine ligand of superoxide reductase: absorption and resonance Raman studies.
    Desbois A; Valton J; Moreau Y; Torelli S; Nivière V
    Phys Chem Chem Phys; 2021 Feb; 23(8):4636-4645. PubMed ID: 33527107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical processes observed during the reaction of superoxide reductase from Desulfoarculus baarsii with superoxide: re-evaluation of the reaction mechanism.
    Bonnot F; Houée-Levin C; Favaudon V; Nivière V
    Biochim Biophys Acta; 2010 Apr; 1804(4):762-7. PubMed ID: 19962458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe(3+)-eta(2)-peroxo species in superoxide reductase from Treponema pallidum. Comparison with Desulfoarculus baarsii.
    Mathé C; Nivière V; Houée-Levin C; Mattioli TA
    Biophys Chem; 2006 Jan; 119(1):38-48. PubMed ID: 16084640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The first crystal structure of class III superoxide reductase from Treponema pallidum.
    Santos-Silva T; Trincão J; Carvalho AL; Bonifácio C; Auchère F; Raleiras P; Moura I; Moura JJ; Romão MJ
    J Biol Inorg Chem; 2006 Jul; 11(5):548-58. PubMed ID: 16791639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the superoxide reductase catalytic cycle.
    Emerson JP; Coulter ED; Phillips RS; Kurtz DM
    J Biol Chem; 2003 Oct; 278(41):39662-8. PubMed ID: 12900405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometries and electronic structures of cyanide adducts of the non-heme iron active site of superoxide reductases: vibrational and ENDOR studies.
    Clay MD; Yang TC; Jenney FE; Kung IY; Cosper CA; Krishnan R; Kurtz DM; Adams MW; Hoffman BM; Johnson MK
    Biochemistry; 2006 Jan; 45(2):427-38. PubMed ID: 16401073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide reduction by Archaeoglobus fulgidus desulfoferrodoxin: comparison with neelaredoxin.
    Rodrigues JV; Saraiva LM; Abreu IA; Teixeira M; Cabelli DE
    J Biol Inorg Chem; 2007 Feb; 12(2):248-56. PubMed ID: 17066300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic studies of Pyrococcus furiosus superoxide reductase: implications for active-site structures and the catalytic mechanism.
    Clay MD; Jenney FE; Hagedoorn PL; George GN; Adams MW; Johnson MK
    J Am Chem Soc; 2002 Feb; 124(5):788-805. PubMed ID: 11817955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-dependent structural changes in the superoxide reductase from Desulfoarculus baarsii and Treponema pallidum: a FTIR study.
    Berthomieu C; Dupeyrat F; Fontecave M; Verméglio A; Nivière V
    Biochemistry; 2002 Aug; 41(32):10360-8. PubMed ID: 12162752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen bonding to the cysteine ligand of superoxide reductase: acid-base control of the reaction intermediates.
    Tremey E; Bonnot F; Moreau Y; Berthomieu C; Desbois A; Favaudon V; Blondin G; Houée-Levin C; Nivière V
    J Biol Inorg Chem; 2013 Oct; 18(7):815-30. PubMed ID: 23917995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mössbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models.
    Horner O; Mouesca JM; Oddou JL; Jeandey C; Nivière V; Mattioli TA; Mathé C; Fontecave M; Maldivi P; Bonville P; Halfen JA; Latour JM
    Biochemistry; 2004 Jul; 43(27):8815-25. PubMed ID: 15236590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Outer-Sphere Side Chain Substitutions on the Fate of the trans Iron-Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe(B)Mbs): Insights into the Mechanism of Denitrifying NO Reductases.
    Matsumura H; Chakraborty S; Reed J; Lu Y; Moënne-Loccoz P
    Biochemistry; 2016 Apr; 55(14):2091-9. PubMed ID: 27003474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the role of the active-site cysteine ligand in the superoxide reductase from Desulfoarculus baarsii.
    Mathé C; Weill CO; Mattioli TA; Berthomieu C; Houée-Levin C; Tremey E; Nivière V
    J Biol Chem; 2007 Jul; 282(30):22207-16. PubMed ID: 17545670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide reductase from Giardia intestinalis: structural characterization of the first SOR from a eukaryotic organism shows an iron centre that is highly sensitive to photoreduction.
    Sousa CM; Carpentier P; Matias PM; Testa F; Pinho F; Sarti P; Giuffrè A; Bandeiras TM; Romão CV
    Acta Crystallogr D Biol Crystallogr; 2015 Nov; 71(Pt 11):2236-47. PubMed ID: 26527141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and mechanism of superoxide reduction by two-iron superoxide reductase from Desulfovibrio vulgaris.
    Emerson JP; Coulter ED; Cabelli DE; Phillips RS; Kurtz DM
    Biochemistry; 2002 Apr; 41(13):4348-57. PubMed ID: 11914081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sulphur oxygenase reductase from Acidianus ambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre.
    Urich T; Bandeiras TM; Leal SS; Rachel R; Albrecht T; Zimmermann P; Scholz C; Teixeira M; Gomes CM; Kletzin A
    Biochem J; 2004 Jul; 381(Pt 1):137-46. PubMed ID: 15030315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.