These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22715970)

  • 1. Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores.
    Kohl KD; Dearing MD
    Ecol Lett; 2012 Sep; 15(9):1008-15. PubMed ID: 22715970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut microbes of mammalian herbivores facilitate intake of plant toxins.
    Kohl KD; Weiss RB; Cox J; Dale C; Dearing MD
    Ecol Lett; 2014 Oct; 17(10):1238-46. PubMed ID: 25040855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced and constitutive responses of digestive enzymes to plant toxins in an herbivorous mammal.
    Kohl KD; Dearing MD
    J Exp Biol; 2011 Dec; 214(Pt 24):4133-40. PubMed ID: 22116755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds.
    Malenke JR; Skopec MM; Dearing MD
    BMC Ecol; 2014 Aug; 14():23. PubMed ID: 25123454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Pharm-ecology" of diet shifting: biotransformation of plant secondary compounds in creosote (Larrea tridentata) by a woodrat herbivore, Neotoma lepida.
    Haley SL; Lamb JG; Franklin MR; Constance JE; Dearing MD
    Physiol Biochem Zool; 2008; 81(5):584-93. PubMed ID: 18752424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic gene expression in herbivores on diets with natural and novel plant secondary compounds.
    Magnanou E; Malenke JR; Dearing MD
    Physiol Genomics; 2013 Sep; 45(17):774-85. PubMed ID: 23859940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ambient temperature influences tolerance to plant secondary compounds in a mammalian herbivore.
    Kurnath P; Merz ND; Dearing MD
    Proc Biol Sci; 2016 Jan; 283(1822):. PubMed ID: 26763703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxin tolerance across landscapes: Ecological exposure not a prerequisite.
    Dearing MD; Orr TJ; Klure DM; Greenhalgh R; Weinstein SB; Stapleton T; Yamada KYH; Nelson MD; Doolin ML; Nielsen DP; Matocq MD; Shapiro MD
    Funct Ecol; 2022 Aug; 36(8):2119-2131. PubMed ID: 37727272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trio-binned genomes of the woodrats Neotoma bryanti and Neotoma lepida reveal novel gene islands and rapid copy number evolution of xenobiotic metabolizing genes.
    Greenhalgh R; Holding ML; Orr TJ; Henderson JB; Parchman TL; Matocq MD; Shapiro MD; Dearing MD
    Mol Ecol Resour; 2022 Oct; 22(7):2713-2731. PubMed ID: 35599377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome P450 2B diversity and dietary novelty in the herbivorous, desert woodrat (Neotoma lepida).
    Malenke JR; Magnanou E; Thomas K; Dearing MD
    PLoS One; 2012; 7(8):e41510. PubMed ID: 22927909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creosote bush (Larrea tridentata) resin increases water demands and reduces energy availability in desert woodrats (Neotoma lepida).
    Mangione AM; Dearing MD; Karasov WH
    J Chem Ecol; 2004 Jul; 30(7):1409-29. PubMed ID: 15503528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant secondary metabolites alter the feeding patterns of a mammalian herbivore (Neotoma lepida).
    Sorensen JS; Heward E; Dearing MD
    Oecologia; 2005 Dec; 146(3):415-22. PubMed ID: 16163555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing the diet-breadth trade-off hypothesis: differential regulation of novel plant secondary compounds by a specialist and a generalist herbivore.
    Torregrossa AM; Azzara AV; Dearing MD
    Oecologia; 2012 Mar; 168(3):711-8. PubMed ID: 21927911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Woodrat Gut Microbiota as an Experimental System for Understanding Microbial Metabolism of Dietary Toxins.
    Kohl KD; Dearing MD
    Front Microbiol; 2016; 7():1165. PubMed ID: 27516760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in dietary composition and preference maintained despite gene flow across a woodrat hybrid zone.
    Nielsen DP; Matocq MD
    Ecol Evol; 2021 May; 11(9):4909-4919. PubMed ID: 33976858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elimination of plant toxins by herbivorous woodrats: revisiting an explanation for dietary specialization in mammalian herbivores.
    Sorensen JS; Dearing MD
    Oecologia; 2003 Jan; 134(1):88-94. PubMed ID: 12647185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wild-caught rodents retain a majority of their natural gut microbiota upon entrance into captivity.
    Kohl KD; Dearing MD
    Environ Microbiol Rep; 2014 Apr; 6(2):191-5. PubMed ID: 24596293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of biotransformation genes in woodrat (Neotoma) herbivores on novel and ancestral diets: identification of candidate genes responsible for dietary shifts.
    Magnanou E; Malenke JR; Dearing MD
    Mol Ecol; 2009 Jun; 18(11):2401-14. PubMed ID: 19389177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Herbivorous rodents (Neotoma spp.) harbour abundant and active foregut microbiota.
    Kohl KD; Miller AW; Marvin JE; Mackie R; Dearing MD
    Environ Microbiol; 2014 Sep; 16(9):2869-78. PubMed ID: 24373154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The draft genome sequence and annotation of the desert woodrat Neotoma lepida.
    Campbell M; Oakeson KF; Yandell M; Halpert JR; Dearing D
    Genom Data; 2016 Sep; 9():58-9. PubMed ID: 27408812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.