BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 2271606)

  • 1. Quenching of tryptophan fluorescence by brominated phospholipid.
    Bolen EJ; Holloway PW
    Biochemistry; 1990 Oct; 29(41):9638-43. PubMed ID: 2271606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data.
    Voglino L; Simon SA; McIntosh TJ
    Biochemistry; 1999 Jun; 38(23):7509-16. PubMed ID: 10360948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the depth of bromine atoms in bilayers formed from bromolipid probes.
    McIntosh TJ; Holloway PW
    Biochemistry; 1987 Mar; 26(6):1783-8. PubMed ID: 3593689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers.
    De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B
    Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan fluorescence of mitochondrial complex III reconstituted in phosphatidylcholine bilayers.
    Valpuesta JM; Goñi FM; Macarulla JM
    Arch Biochem Biophys; 1987 Sep; 257(2):285-92. PubMed ID: 2821906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan fluorescence study on the interaction of the signal peptide of the Escherichia coli outer membrane protein PhoE with model membranes.
    Killian JA; Keller RC; Struyvé M; de Kroon AI; Tommassen J; de Kruijff B
    Biochemistry; 1990 Sep; 29(35):8131-7. PubMed ID: 2175648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence quenching of anthracene by indole derivatives in phospholipid bilayers.
    Novaira AI; Avila V; Montich GG; Previtali CM
    J Photochem Photobiol B; 2001 Apr; 60(1):25-31. PubMed ID: 11386677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the membrane topology of peptides by fluorescence quenching.
    Wimley WC; White SH
    Biochemistry; 2000 Jan; 39(1):161-70. PubMed ID: 10625491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the environment of tryptophan in a hydrophobic model peptide upon aggregation and interaction with lipid vesicles: a steady state and time resolved fluorescence study.
    Joseph M; Nagaraj R
    Indian J Biochem Biophys; 1998 Apr; 35(2):67-75. PubMed ID: 9753864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence studies of the secondary structure and orientation of a model ion channel peptide in phospholipid vesicles.
    Chung LA; Lear JD; DeGrado WF
    Biochemistry; 1992 Jul; 31(28):6608-16. PubMed ID: 1378757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of depth-dependent fluorescence quenching in membranes by molecular dynamics simulation of tryptophan octyl ester in POPC bilayer.
    Kyrychenko A; Tobias DJ; Ladokhin AS
    J Phys Chem B; 2013 May; 117(17):4770-8. PubMed ID: 23528135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transversal distribution of acyl-linked pyrene moieties in liquid-crystalline phosphatidylcholine bilayers. A fluorescence quenching study.
    Sassaroli M; Ruonala M; Virtanen J; Vauhkonen M; Somerharju P
    Biochemistry; 1995 Jul; 34(27):8843-51. PubMed ID: 7612625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence quenching of cytochrome b5 in vesicles with an asymmetric transbilayer distribution of brominated phosphatidylcholine.
    Everett J; Zlotnick A; Tennyson J; Holloway PW
    J Biol Chem; 1986 May; 261(15):6725-9. PubMed ID: 3700412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photophysics of anthracene-indole systems in unilamellar vesicles of DMPC and POPC: Exciplex formation and temperature effects.
    Novaira AI; Previtali CM
    J Photochem Photobiol B; 2006 Nov; 85(2):102-8. PubMed ID: 16831556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence studies of cytochrome b5 topography. Incorporation of cytochrome b5 into brominated phosphatidylcholine vesicles by deoxycholate.
    Tennyson J; Holloway PW
    J Biol Chem; 1986 Oct; 261(30):14196-200. PubMed ID: 3771530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the alpha-helices of apolipophorin III with the phospholipid acyl chains in discoidal lipoprotein particles: a fluorescence quenching study.
    Soulages JL; Arrese EL
    Biochemistry; 2001 Nov; 40(47):14279-90. PubMed ID: 11714282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Photo-induced charge transfer processes.
    Barenholz Y; Cohen T; Korenstein R; Ottolenghi M
    Biophys J; 1991 Jul; 60(1):110-24. PubMed ID: 1883931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence analysis of tryptophan-containing variants of the LamB signal sequence upon insertion into a lipid bilayer.
    McKnight CJ; Rafalski M; Gierasch LM
    Biochemistry; 1991 Jun; 30(25):6241-6. PubMed ID: 2059631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depth-dependent fluorescent quenching of a tryptophan residue located at defined positions on a rigid 21-peptide helix in liposomes.
    Voges KP; Jung G; Sawyer WH
    Biochim Biophys Acta; 1987 Jan; 896(1):64-76. PubMed ID: 3790588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of long-chain alkyl derivatives to lipid bilayers and to (Ca2+-Mg2+)-ATPase.
    Froud RJ; East JM; Rooney EK; Lee AG
    Biochemistry; 1986 Nov; 25(23):7535-44. PubMed ID: 2948559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.