These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Strand orientation of [alpha]-oligodeoxynucleotides in triple helix structures: dependence on nucleotide sequence. Sun JS; Lavery R J Mol Recognit; 1992 Sep; 5(3):93-8. PubMed ID: 1298305 [TBL] [Abstract][Full Text] [Related]
8. Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides. Xodo LE; Alunni-Fabbroni M; Manzini G J Biomol Struct Dyn; 1994 Feb; 11(4):703-20. PubMed ID: 8204209 [TBL] [Abstract][Full Text] [Related]
9. Polyamine-linked oligonucleotides for DNA triple helix formation. Tung CH; Breslauer KJ; Stein S Nucleic Acids Res; 1993 Nov; 21(23):5489-94. PubMed ID: 8265366 [TBL] [Abstract][Full Text] [Related]
10. Energetics of strand-displacement reactions in triple helices: a spectroscopic study. Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941 [TBL] [Abstract][Full Text] [Related]
11. Effect of third strand composition on the triple helix formation: purine versus pyrimidine oligodeoxynucleotides. Faucon B; Mergny JL; Héléne C Nucleic Acids Res; 1996 Aug; 24(16):3181-8. PubMed ID: 8774898 [TBL] [Abstract][Full Text] [Related]
12. Prediction of the structure of the Y+.R-.R(+)-type DNA triple helix by molecular modelling. Laughton CA; Neidle S Nucleic Acids Res; 1992 Dec; 20(24):6535-41. PubMed ID: 1480474 [TBL] [Abstract][Full Text] [Related]
13. Recognition of thymine adenine.base pairs by guanine in a pyrimidine triple helix motif. Griffin LC; Dervan PB Science; 1989 Sep; 245(4921):967-71. PubMed ID: 2549639 [TBL] [Abstract][Full Text] [Related]
14. Effect of selective cytosine methylation and hydration on the conformations of DNA triple helices containing a TTTT loop structure by FT-IR spectroscopy. Fang Y; Bai C; Wei Y; Lin SB; Kan L J Biomol Struct Dyn; 1995 Dec; 13(3):471-82. PubMed ID: 8825727 [TBL] [Abstract][Full Text] [Related]
15. Sequence-specific recognition of the major groove of DNA by oligodeoxynucleotides via triple helix formation. Footprinting studies. François JC; Saison-Behmoaras T; Hélène C Nucleic Acids Res; 1988 Dec; 16(24):11431-40. PubMed ID: 3211742 [TBL] [Abstract][Full Text] [Related]
16. Sequence-specific cleavage of double helical DNA by triple helix formation. Moser HE; Dervan PB Science; 1987 Oct; 238(4827):645-50. PubMed ID: 3118463 [TBL] [Abstract][Full Text] [Related]
17. Pyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition. Xodo L; Alunni-Fabbroni M; Manzini G; Quadrifoglio F Nucleic Acids Res; 1994 Aug; 22(16):3322-30. PubMed ID: 8078767 [TBL] [Abstract][Full Text] [Related]
18. Triple-helix formation by alpha oligodeoxynucleotides and alpha oligodeoxynucleotide-intercalator conjugates. Sun JS; Giovannangeli C; François JC; Kurfurst R; Montenay-Garestier T; Asseline U; Saison-Behmoaras T; Thuong NT; Hélène C Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6023-7. PubMed ID: 2068079 [TBL] [Abstract][Full Text] [Related]
19. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif. Marfurt J; Parel SP; Leumann CJ Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352 [TBL] [Abstract][Full Text] [Related]
20. Sequence and pH effects of LNA-containing triple helix-forming oligonucleotides: physical chemistry, biochemistry, and modeling studies. Sun BW; Babu BR; Sørensen MD; Zakrzewska K; Wengel J; Sun JS Biochemistry; 2004 Apr; 43(14):4160-9. PubMed ID: 15065859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]