BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 2271632)

  • 1. Asymmetric short-chain phosphatidylcholines: defining chain binding constraints in phospholipases.
    Lewis KA; Bian JR; Sweeney A; Roberts MF
    Biochemistry; 1990 Oct; 29(42):9962-70. PubMed ID: 2271632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methyl branching in short-chain lecithins: are both chains important for effective phospholipase A2 activity?
    DeBose CD; Burns RA; Donovan JM; Roberts MF
    Biochemistry; 1985 Mar; 24(6):1298-306. PubMed ID: 3986178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micellar bolaform and omega-carboxylate phosphatidylcholines as substrates for phospholipases.
    Lewis KA; Soltys CE; Yu K; Roberts MF
    Biochemistry; 1994 May; 33(17):5000-10. PubMed ID: 8172875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of phospholipase C (Bacillus cereus) activity to phosphatidylcholine structural modifications.
    el-Sayed MY; DeBose CD; Coury LA; Roberts MF
    Biochim Biophys Acta; 1985 Dec; 837(3):325-35. PubMed ID: 3933566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural importance of the amino-terminal residue of pancreatic phospholipase A2.
    van Scharrenburg GJ; Jansen EH; Egmond MR; de Haas GH; Slotboom AJ
    Biochemistry; 1984 Dec; 23(25):6285-94. PubMed ID: 6441599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis of short-chain phosphatidylcholines by bee venom phospholipase A2.
    Raykova D; Blagoev B
    Toxicon; 1986; 24(8):791-7. PubMed ID: 3775794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic hydrolysis of short-chain lecithin/long-chain phospholipid unilamellar vesicles: sensitivity of phospholipases to matrix phase state.
    Gabriel NE; Agman NV; Roberts MF
    Biochemistry; 1987 Nov; 26(23):7409-18. PubMed ID: 3122829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1-Palmitoyl-2-thiopalmitoyl phosphatidylcholine, a highly specific chromogenic substrate of phospholipase A2.
    Balet C; Clingman KA; Hajdu J
    Biochem Biophys Res Commun; 1988 Jan; 150(2):561-7. PubMed ID: 3124835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of phospholipase A2 activity by the lipid-water interface: a monolayer approach.
    Pattus F; Slotboom AJ; de Haas GH
    Biochemistry; 1979 Jun; 18(13):2691-7. PubMed ID: 573135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 18O isotope exchange experiments on phospholipase A2 determined by 13C-NMR: monomeric phosphatidylcholine and micellar phosphatidylethanolamine substrates.
    Fanni T; Deems RA; Dennis EA
    Biochim Biophys Acta; 1989 Jul; 1004(1):134-8. PubMed ID: 2742867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipase C from Bacillus cereus. Action on some artificial lecithins.
    Little C
    Acta Chem Scand B; 1977; 31(4):267-72. PubMed ID: 16420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution conformations of short-chain phosphatidylcholine. Substrates of the phosphatidylcholine-preferring PLC of Bacillus cereus.
    Martin SF; Pitzer GE
    Biochim Biophys Acta; 2000 Mar; 1464(1):104-12. PubMed ID: 10704924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of surface hydrophobic residues in the interfacial catalysis of bovine pancreatic phospholipase A2.
    Lee BI; Yoon ET; Cho W
    Biochemistry; 1996 Apr; 35(13):4231-40. PubMed ID: 8672459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific epsilon-NH2 monoacylation of pancreatic phospholipase A2. 2. Transformation of soluble phospholipase A2 into a highly penetrating "membrane-bound" form.
    Van der Wiele FC; Atsma W; Roelofsen B; van Linde M; Van Binsbergen J; Radvanyi F; Raykova D; Slotboom AJ; De Haas GH
    Biochemistry; 1988 Mar; 27(5):1688-94. PubMed ID: 3130102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination between the regioisomeric 1,2- and 1,3-diacylglycerophosphocholines by phospholipases.
    Mansfeld J; Brandt W; Haftendorn R; Schöps R; Ulbrich-Hofmann R
    Chem Phys Lipids; 2011 Mar; 164(3):196-204. PubMed ID: 21195068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pancreatic phospholipase A2 hydrolysis of phosphatidylcholines in various physicochemical states.
    Nalbone G; Lairon D; Charbonnier-Augeire M; Vigne JL; Leonardi J; Chabert C; Hauton JC; Verger R
    Biochim Biophys Acta; 1980 Dec; 620(3):612-25. PubMed ID: 7195282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of prodan-phosphatidylcholine, a new fluorescent probe, and its interactions with pancreatic and snake venom phospholipases A2.
    Hendrickson HS; Dumdei EJ; Batchelder AG; Carlson GL
    Biochemistry; 1987 Jun; 26(12):3697-703. PubMed ID: 3651404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of monomeric activators in cobra venom phospholipase A2 action.
    Plückthun A; Dennis EA
    Biochemistry; 1982 Apr; 21(8):1750-6. PubMed ID: 7082644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on lysophospholipases, V. The action of lysolecithin-hydrolyzing enzymes on lecithins and 1-acyl lysolecithins with varying fatty acid chain-length.
    De Jong JG; Dijkman R; Bosch VD
    Chem Phys Lipids; 1975 Nov; 15(2):125-37. PubMed ID: 1239338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolysis of a fluorescent phospholipid substrate by phospholipase A2 and lipoprotein lipase.
    Wittenauer LA; Shirai K; Jackson RL; Johnson JD
    Biochem Biophys Res Commun; 1984 Feb; 118(3):894-901. PubMed ID: 6704113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.