These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2271644)

  • 1. Melting and chemical modification of a cyclized self-splicing group I intron: similarity of structures in 1 M Na+, in 10 mM Mg2+, and in the presence of substrate.
    Jaeger JA; Zuker M; Turner DH
    Biochemistry; 1990 Nov; 29(44):10147-58. PubMed ID: 2271644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-mapping of the hairpin ribozyme. Magnesium-dependent folding and evidence for tertiary interactions within the ribozyme-substrate complex.
    Butcher SE; Burke JM
    J Mol Biol; 1994 Nov; 244(1):52-63. PubMed ID: 7966321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics for reaction of a circularized intervening sequence with CU, UCU, CUCU, and CUCUCU: mechanistic implications from the dependence on temperature and on oligomer and Mg2+ concentrations.
    Sugimoto N; Kierzek R; Turner DH
    Biochemistry; 1988 Aug; 27(17):6384-92. PubMed ID: 2464367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA secondary structure analysis of the packaging signal for Moloney murine leukemia virus.
    Alford RL; Honda S; Lawrence CB; Belmont JW
    Virology; 1991 Aug; 183(2):611-9. PubMed ID: 1853563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary structures of Tetrahymena thermophila rRNA IVS sequence involved in its self-splicing reactions: a new computer analysis.
    Benedetti G; De Santis P; Morosetti S
    J Biomol Struct Dyn; 1990 Jun; 7(6):1269-77. PubMed ID: 2194496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal unfolding of a group I ribozyme: the low-temperature transition is primarily disruption of tertiary structure.
    Banerjee AR; Jaeger JA; Turner DH
    Biochemistry; 1993 Jan; 32(1):153-63. PubMed ID: 8418835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks.
    Downs WD; Cech TR
    RNA; 1996 Jul; 2(7):718-32. PubMed ID: 8756414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing.
    Ho Y; Waring RB
    J Mol Biol; 1999 Oct; 292(5):987-1001. PubMed ID: 10512698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimum secondary structure requirements for catalytic activity of a self-splicing group I intron.
    Beaudry AA; Joyce GF
    Biochemistry; 1990 Jul; 29(27):6534-9. PubMed ID: 2207095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and secondary structure analysis of Naegleria andersoni GIR1, a group I ribozyme whose putative biological function is site-specific hydrolysis.
    Jabri E; Aigner S; Cech TR
    Biochemistry; 1997 Dec; 36(51):16345-54. PubMed ID: 9405070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site.
    Herschlag D; Cech TR
    Biochemistry; 1990 Nov; 29(44):10159-71. PubMed ID: 2271645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of a group II intron by chemical modifications and minimal energy calculations.
    Kwakman JH; Konings DA; Hogeweg P; Pel HJ; Grivell LA
    J Biomol Struct Dyn; 1990 Oct; 8(2):413-30. PubMed ID: 1702639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus.
    Dávila-Aponte JA; Huss VA; Sogin ML; Cech TR
    Nucleic Acids Res; 1991 Aug; 19(16):4429-36. PubMed ID: 1886767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of substrate structure on the kinetics of circle opening reactions of the self-splicing intervening sequence from Tetrahymena thermophila: evidence for substrate and Mg2+ binding interactions.
    Sugimoto N; Tomka M; Kierzek R; Bevilacqua PC; Turner DH
    Nucleic Acids Res; 1989 Jan; 17(1):355-71. PubMed ID: 2643083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme.
    Mohr G; Caprara MG; Guo Q; Lambowitz AM
    Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exon sequences distant from the splice junction are required for efficient self-splicing of the Tetrahymena IVS.
    Woodson SA
    Nucleic Acids Res; 1992 Aug; 20(15):4027-32. PubMed ID: 1508687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an authentic intermediate in the self-splicing process of ribosomal precursor RNA in macronuclei of Tetrahymena thermophila.
    Kister KP; Eckert WA
    Nucleic Acids Res; 1987 Mar; 15(5):1905-20. PubMed ID: 3645543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional folding of Tetrahymena thermophila rRNA IVS sequence: a proposal.
    Benedetti G; Morosetti S
    J Biomol Struct Dyn; 1991 Apr; 8(5):1045-55. PubMed ID: 1715170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitation of group I splicing in vivo: misfolding of the Tetrahymena IVS and the role of ribosomal RNA exons.
    Nikolcheva T; Woodson SA
    J Mol Biol; 1999 Sep; 292(3):557-67. PubMed ID: 10497021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.