These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 2271646)

  • 21. Alteration of substrate specificity for the endoribonucleolytic cleavage of RNA by the Tetrahymena ribozyme.
    Murphy FL; Cech TR
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9218-22. PubMed ID: 2480597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of divalent metal ions on individual steps of the Tetrahymena ribozyme reaction.
    McConnell TS; Herschlag D; Cech TR
    Biochemistry; 1997 Jul; 36(27):8293-303. PubMed ID: 9204875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of binding energy by an RNA enzyme for catalysis by positioning and substrate destabilization.
    Narlikar GJ; Gopalakrishnan V; McConnell TS; Usman N; Herschlag D
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3668-72. PubMed ID: 7731962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissection of the role of the conserved G.U pair in group I RNA self-splicing.
    Knitt DS; Narlikar GJ; Herschlag D
    Biochemistry; 1994 Nov; 33(46):13864-79. PubMed ID: 7947795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: more isn't always better.
    Herschlag D
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):6921-5. PubMed ID: 1871108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic scheme for intermolecular RNA cleavage by a ribozyme derived from hepatitis delta virus RNA.
    Shih I; Been MD
    Biochemistry; 2000 Aug; 39(31):9055-66. PubMed ID: 10924098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Replacement of the conserved G.U with a G-C pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity, and fidelity.
    Pyle AM; Moran S; Strobel SA; Chapman T; Turner DH; Cech TR
    Biochemistry; 1994 Nov; 33(46):13856-63. PubMed ID: 7947794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme.
    Strobel SA; Cech TR
    Biochemistry; 1993 Dec; 32(49):13593-604. PubMed ID: 7504953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct measurement of oligonucleotide substrate binding to wild-type and mutant ribozymes from Tetrahymena.
    Pyle AM; McSwiggen JA; Cech TR
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8187-91. PubMed ID: 2236030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
    Engelhardt MA; Doherty EA; Knitt DS; Doudna JA; Herschlag D
    Biochemistry; 2000 Mar; 39(10):2639-51. PubMed ID: 10704214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protonated 2'-aminoguanosine as a probe of the electrostatic environment of the active site of the Tetrahymena group I ribozyme.
    Shan SO; Narlikar GJ; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10976-88. PubMed ID: 10460152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the mode of binding of substrates to the active site of Tetrahymena self-splicing RNA using 5-fluorouracil-substituted mini-exons.
    Danenberg PV; Shea LC; Danenberg K
    Biochemistry; 1989 Aug; 28(16):6779-85. PubMed ID: 2675974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
    Forconi M; Sengupta RN; Piccirilli JA; Herschlag D
    Biochemistry; 2010 Mar; 49(12):2753-62. PubMed ID: 20175542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Minor groove recognition of the conserved G.U pair at the Tetrahymena ribozyme reaction site.
    Strobel SA; Cech TR
    Science; 1995 Feb; 267(5198):675-9. PubMed ID: 7839142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis delta virus RNA sequence.
    Perrotta AT; Been MD
    Biochemistry; 1992 Jan; 31(1):16-21. PubMed ID: 1731868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
    Guo F; Gooding AR; Cech TR
    Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aminoacyl esterase activity of the Tetrahymena ribozyme.
    Piccirilli JA; McConnell TS; Zaug AJ; Noller HF; Cech TR
    Science; 1992 Jun; 256(5062):1420-4. PubMed ID: 1604316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.