These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2271661)

  • 1. Phosphonate analogue substrates for enolase.
    Anderson VE; Cleland WW
    Biochemistry; 1990 Nov; 29(46):10498-503. PubMed ID: 2271661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction intermediate analogues for enolase.
    Anderson VE; Weiss PM; Cleland WW
    Biochemistry; 1984 Jun; 23(12):2779-86. PubMed ID: 6380574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tetrahymena ribozyme cleaves a 5'-methylene phosphonate monoester approximately 10(2)-fold faster than a normal phosphate diester: implications for enzyme catalysis of phosphoryl transfer reactions.
    Liao X; Anjaneyulu PS; Curley JF; Hsu M; Boehringer M; Caruthers MH; Piccirilli JA
    Biochemistry; 2001 Sep; 40(37):10911-26. PubMed ID: 11551186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase.
    Poyner RR; Larsen TM; Wong SW; Reed GH
    Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution.
    Larsen TM; Wedekind JE; Rayment I; Reed GH
    Biochemistry; 1996 Apr; 35(14):4349-58. PubMed ID: 8605183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary and secondary kinetic isotope effects as probes of the mechanism of yeast enolase.
    Anderson SR; Anderson VE; Knowles JR
    Biochemistry; 1994 Aug; 33(34):10545-55. PubMed ID: 8068695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnesium ion requirements for yeast enolase activity.
    Faller LD; Baroudy BM; Johnson AM; Ewall RX
    Biochemistry; 1977 Aug; 16(17):3864-9. PubMed ID: 332224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH dependence of the reaction catalyzed by yeast Mg-enolase.
    Vinarov DA; Nowak T
    Biochemistry; 1998 Oct; 37(43):15238-46. PubMed ID: 9790688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic function of loop movement in enolase: preparation and some properties of H159N, H159A, H159F, and N207A enolases.
    Brewer JM; Glover CV; Holland MJ; Lebioda L
    J Protein Chem; 2003 May; 22(4):353-61. PubMed ID: 13678299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inhibition of yeast enolase by Li+ and Na+1.
    Kornblatt MJ; Musil R
    Arch Biochem Biophys; 1990 Mar; 277(2):301-5. PubMed ID: 2178554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of nitrogen-15 and deuterium isotope effects to determine the chemical mechanism of phenylalanine ammonia-lyase.
    Hermes JD; Weiss PM; Cleland WW
    Biochemistry; 1985 Jun; 24(12):2959-67. PubMed ID: 3893533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A resolution.
    Wedekind JE; Poyner RR; Reed GH; Rayment I
    Biochemistry; 1994 Aug; 33(31):9333-42. PubMed ID: 8049235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enolase and the arsonomethyl analogue of 2-phosphoglycerate.
    Chawla S; Dixon HB
    J Enzyme Inhib; 1995; 8(4):255-9. PubMed ID: 7542322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the bis divalent cation complex with phosphonoacetohydroxamate at the active site of enolase.
    Poyner RR; Reed GH
    Biochemistry; 1992 Aug; 31(31):7166-73. PubMed ID: 1322695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of yeast enolase by Cd(II).
    Spencer SG; Brewer JM
    J Inorg Biochem; 1984 Jan; 20(1):39-52. PubMed ID: 6363624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphonate analogues of diadenosine 5',5'''-P1,P4-tetraphosphate as substrates or inhibitors of procaryotic and eucaryotic enzymes degrading dinucleoside tetraphosphates.
    Guranowski A; Biryukov A; Tarussova NB; Khomutov RM; Jakubowski H
    Biochemistry; 1987 Jun; 26(12):3425-9. PubMed ID: 2820468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the regulation of enolases and compartmentation of cytosolic enzymes in Saccharomyces cerevisiae.
    Entian KD; Meurer B; Köhler H; Mann KH; Mecke D
    Biochim Biophys Acta; 1987 Feb; 923(2):214-21. PubMed ID: 3545298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of site-directed mutagenesis of His373 of yeast enolase on some of its physical and enzymatic properties.
    Brewer JM; Glover CV; Holland MJ; Lebioda L
    Biochim Biophys Acta; 1997 Jun; 1340(1):88-96. PubMed ID: 9217018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crotonase-catalyzed beta-elimination is concerted: a double isotope effect study.
    Bahnson BJ; Anderson VE
    Biochemistry; 1991 Jun; 30(24):5894-906. PubMed ID: 2043630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of metal ions in catalysis by enolase: an ordered kinetic mechanism for a single substrate enzyme.
    Poyner RR; Cleland WW; Reed GH
    Biochemistry; 2001 Jul; 40(27):8009-17. PubMed ID: 11434770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.