BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2271679)

  • 1. Length of the acyl carbonyl bond in acyl-serine proteases correlates with reactivity.
    Tonge PJ; Carey PR
    Biochemistry; 1990 Dec; 29(48):10723-7. PubMed ID: 2271679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis.
    Whiting AK; Peticolas WL
    Biochemistry; 1994 Jan; 33(2):552-61. PubMed ID: 8286385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forces, bond lengths, and reactivity: fundamental insight into the mechanism of enzyme catalysis.
    Tonge PJ; Carey PR
    Biochemistry; 1992 Sep; 31(38):9122-5. PubMed ID: 1390699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observation of the titration of substrate carbonyl groups in the active site of alpha-chymotrypsin by resonance Raman spectroscopy.
    Tonge PJ; Carey PR
    Biochemistry; 1989 Aug; 28(16):6701-9. PubMed ID: 2790025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-helix dipoles and catalysis: absorption and Raman spectroscopic studies of acyl cysteine proteases.
    Doran JD; Carey PR
    Biochemistry; 1996 Sep; 35(38):12495-502. PubMed ID: 8823185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen-bonding in enzyme catalysis. Fourier-transform infrared detection of ground-state electronic strain in acyl-chymotrypsins and analysis of the kinetic consequences.
    White AJ; Wharton CW
    Biochem J; 1990 Sep; 270(3):627-37. PubMed ID: 2241898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of specificity on ligand conformation in acyl-chymotrypsins.
    Johal SS; White AJ; Wharton CW
    Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):281-7. PubMed ID: 8297332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-State
    Tang AW; Kong X; Terskikh V; Wu G
    J Phys Chem B; 2016 Nov; 120(43):11142-11150. PubMed ID: 27731644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation.
    Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR
    Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric fields in active sites: substrate switching from null to strong fields in thiol- and selenol-subtilisins.
    Dinakarpandian D; Shenoy BC; Hilvert D; McRee DE; McTigue M; Carey PR
    Biochemistry; 1999 May; 38(20):6659-67. PubMed ID: 10350485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-bonding in 2-aminobenzoyl-alpha-chymotrypsin formed by acylation of the enzyme with isatoic anhydride: IR and mass spectroscopic studies.
    Goodall JJ; Booth VK; Ashcroft AE; Wharton CW
    Chembiochem; 2002 Jan; 3(1):68-75. PubMed ID: 17590956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and elimination of protein perturbation in infrared difference spectra of acyl-chymotrypsin ester carbonyl groups by using 13C isotopic substitution.
    White AJ; Drabble K; Ward S; Wharton CW
    Biochem J; 1992 Oct; 287 ( Pt 1)(Pt 1):317-23. PubMed ID: 1417785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of the acyl-enzyme and the tetrahedral intermediate in the deacylation step of serine proteases.
    Topf M; VĂ¡rnai P; Schofield CJ; Richards WG
    Proteins; 2002 May; 47(3):357-69. PubMed ID: 11948789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman and Fourier transform infrared spectroscopic studies of the acyl carbonyl group in [3-(5-methyl-2-thienyl)acryloyl]chymotrypsin: evidence for artifacts in the spectra obtained by both techniques.
    Tonge PJ; Pusztai M; White AJ; Wharton CW; Carey PR
    Biochemistry; 1991 May; 30(19):4790-5. PubMed ID: 2029519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deacylation and reacylation for a series of acyl cysteine proteases, including acyl groups derived from novel chromophoric substrates.
    Doran JD; Tonge PJ; Mort JS; Carey PR
    Biochemistry; 1996 Sep; 35(38):12487-94. PubMed ID: 8823184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active site properties of the 3C proteinase from hepatitis A virus (a hybrid cysteine/serine protease) probed by Raman spectroscopy.
    Dinakarpandian D; Shenoy B; Pusztai-Carey M; Malcolm BA; Carey PR
    Biochemistry; 1997 Apr; 36(16):4943-8. PubMed ID: 9125516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromophoric cinnamic acid substrates as resonance Raman probes of the active site environment in native and unfolded alpha-chymotrypsin.
    Weber JA; Turpin P; Bernhard SA; Peticolas WL
    Biochemistry; 1986 Apr; 25(8):1912-7. PubMed ID: 3707918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for two acyl group conformations in some furylacryloyl- and thienylacryloylchymotrypsins: resonance Raman studies of enzyme--substrate intermediates at pH 3.0.
    MacClement BA; Carriere RG; Phelps DJ; Carey PR
    Biochemistry; 1981 Jun; 20(12):3438-47. PubMed ID: 7260048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman carbonyl frequencies and ultraviolet absorption maxima as indicators of the active site environment in native and unfolded chromophoric acyl-alpha-chymotrypsin.
    Argade PV; Gerke GK; Weber JP; Peticolas WL
    Biochemistry; 1984 Jan; 23(2):299-304. PubMed ID: 6607745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active site dynamics of acyl-chymotrypsin.
    Nakagawa S; Yu HA; Karplus M; Umeyama H
    Proteins; 1993 Jun; 16(2):172-94. PubMed ID: 8332606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.