These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 22717034)
1. In-line sampling with gas chromatography-mass spectrometry to monitor ambient volatile organic compounds. Wang JL; Chang CC; Lee KZ J Chromatogr A; 2012 Jul; 1248():161-8. PubMed ID: 22717034 [TBL] [Abstract][Full Text] [Related]
2. Automatic on-line monitoring of atmospheric volatile organic compounds: gas chromatography-mass spectrometry and gas chromatography-flame ionization detection as complementary systems. de Blas M; Navazo M; Alonso L; Durana N; Iza J Sci Total Environ; 2011 Nov; 409(24):5459-69. PubMed ID: 21978614 [TBL] [Abstract][Full Text] [Related]
3. Ultimate detectability of volatile organic compounds: how much further can we reduce their ambient air sample volumes for analysis? Kim YH; Kim KH Anal Chem; 2012 Oct; 84(19):8284-93. PubMed ID: 22934885 [TBL] [Abstract][Full Text] [Related]
4. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options. Woolfenden E J Chromatogr A; 2010 Apr; 1217(16):2674-84. PubMed ID: 20106481 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of an automated monitoring system for oxygenated volatile organic compounds and nitrile compounds in ambient air. Roukos J; Plaisance H; Leonardis T; Bates M; Locoge N J Chromatogr A; 2009 Dec; 1216(49):8642-51. PubMed ID: 19863965 [TBL] [Abstract][Full Text] [Related]
6. Determination of volatile organic compounds in contaminated air using semipermeable membrane devices. Ly-Verdú S; Esteve-Turrillas FA; Pastor A; de la Guardia M Talanta; 2010 Mar; 80(5):2041-8. PubMed ID: 20152450 [TBL] [Abstract][Full Text] [Related]
7. Use of thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) on identification of odorant emission focus by volatile organic compounds characterisation. Rodríguez-Navas C; Forteza R; Cerdà V Chemosphere; 2012 Nov; 89(11):1426-36. PubMed ID: 22776256 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the effect of different sampling time periods and ambient air pollutant concentrations on the performance of the Radiello diffusive sampler for the analysis of VOCs by TD-GC/MS. Gallego E; Roca FJ; Perales JF; Guardino X J Environ Monit; 2011 Sep; 13(9):2612-22. PubMed ID: 21829856 [TBL] [Abstract][Full Text] [Related]
9. Construction of an automated gas chromatography/mass spectrometry system for the analysis of ambient volatile organic compounds with on-line internal standard calibration. Su YC; Chang CC; Wang JL J Chromatogr A; 2008 Aug; 1201(2):134-40. PubMed ID: 18405905 [TBL] [Abstract][Full Text] [Related]
10. Full-range analysis of ambient volatile organic compounds by a new trapping method and gas chromatography/mass spectrometry. Su YC; Liu WT; Liao WC; Chiang SW; Wang JL J Chromatogr A; 2011 Aug; 1218(34):5733-42. PubMed ID: 21774941 [TBL] [Abstract][Full Text] [Related]
11. Process sampling module coupled with purge and trap-GC-FID for in situ auto-monitoring of volatile organic compounds in wastewater. Liu HW; Liu YT; Wu BZ; Nian HC; Chen HJ; Chiu KH; Lo JG Talanta; 2009 Dec; 80(2):903-8. PubMed ID: 19836571 [TBL] [Abstract][Full Text] [Related]
12. Development and application of a sensitive method to determine concentrations of acrolein and other carbonyls in ambient air. Cahill TM; Charles MJ; Seaman VY; Res Rep Health Eff Inst; 2010 May; (149):3-46. PubMed ID: 20608023 [TBL] [Abstract][Full Text] [Related]
13. Comparative study of the adsorption performance of an active multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) and a Radiello(®) diffusive sampler for the analysis of VOCs. Gallego E; Roca FJ; Perales JF; Guardino X Talanta; 2011 Jul; 85(1):662-72. PubMed ID: 21645756 [TBL] [Abstract][Full Text] [Related]
14. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods. Woolfenden E J Chromatogr A; 2010 Apr; 1217(16):2685-94. PubMed ID: 20106482 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Gallego E; Roca FJ; Perales JF; Guardino X Talanta; 2010 May; 81(3):916-24. PubMed ID: 20298873 [TBL] [Abstract][Full Text] [Related]
16. Implementation and optimisation of a high-temperature loading strategy of liquid standards in the quantification of volatile organic compounds using solid sorbents. Rodríguez-Navas C; Forteza R; Cerdà V J Sep Sci; 2013 Feb; 36(3):503-10. PubMed ID: 23255419 [TBL] [Abstract][Full Text] [Related]
17. Design and application of Hadamard-injectors coupled with gas and supercritical fluid sample collection systems in Hadamard transform-gas chromatography/mass spectrometry. Fan Z; Lin CH; Chang HW; Kaneta T; Lin CH J Chromatogr A; 2010 Jan; 1217(5):755-60. PubMed ID: 20022013 [TBL] [Abstract][Full Text] [Related]
18. Validation of diffusive mini-samplers for aldehyde and VOC and its feasibility for measuring the exposure levels of elementary school children. Araki A; Tsuboi T; Kawai T; Bamai YA; Takeda T; Yoshioka E; Kishi R J Environ Monit; 2012 Feb; 14(2):368-74. PubMed ID: 21986583 [TBL] [Abstract][Full Text] [Related]
19. Solid-phase microcolumn extraction and gas chromatography-mass spectrometry identification of volatile organic compounds emitted by paper. Hrivnák J; Tölgyessy P; Figedyová S; Katuscák S Talanta; 2009 Nov; 80(1):400-2. PubMed ID: 19782242 [TBL] [Abstract][Full Text] [Related]
20. A passive sampling-based analytical strategy for the determination of volatile organic compounds in the air of working areas. Ly-Verdú S; Esteve-Turrillas FA; Pastor A; de la Guardia M Anal Chim Acta; 2010 Sep; 677(2):131-9. PubMed ID: 20837179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]