These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22717084)

  • 41. Suppressing Structural Colors of Photocatalytic Optical Coatings on Glass: The Critical Role of SiO
    Li R; Boudot M; Boissière C; Grosso D; Faustini M
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14093-14102. PubMed ID: 28398035
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multifunctional antireflection coatings based on novel hollow silica-silica nanocomposites.
    Zhang X; Lan P; Lu Y; Li J; Xu H; Zhang J; Lee Y; Rhee JY; Choy KL; Song W
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1415-23. PubMed ID: 24443948
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioinspired adhesive coatings from polyethylenimine and tannic acid complexes exhibiting antifogging, self-cleaning, and antibacterial capabilities.
    Ren J; Kong R; Gao Y; Zhang L; Zhu J
    J Colloid Interface Sci; 2021 Nov; 602():406-414. PubMed ID: 34139538
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tailored antireflective biomimetic nanostructures for UV applications.
    Morhard C; Pacholski C; Lehr D; Brunner R; Helgert M; Sundermann M; Spatz JP
    Nanotechnology; 2010 Oct; 21(42):425301. PubMed ID: 20858934
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simple approach to wafer-scale self-cleaning antireflective silicon surfaces.
    Qi D; Lu N; Xu H; Yang B; Huang C; Xu M; Gao L; Wang Z; Chi L
    Langmuir; 2009 Jul; 25(14):7769-72. PubMed ID: 19537739
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combined antifogging and antireflective double nanostructured coatings for LiDAR applications.
    Gärtner A; Sabbagh A; Schulz U; Rickelt F; Bingel A; Wolleb S; Schröder S; Tünnermann A
    Appl Opt; 2023 Mar; 62(7):B112-B116. PubMed ID: 37132895
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Superhydrophilic and antireflective La(OH)(3)/SiO(2)-nanorod/nanosphere films.
    You JH; Lee BI; Lee J; Kim H; Byeon SH
    J Colloid Interface Sci; 2011 Feb; 354(1):373-9. PubMed ID: 21036367
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI).
    Zhang YC; Li J; Zhang M; Dionysiou DD
    Environ Sci Technol; 2011 Nov; 45(21):9324-31. PubMed ID: 21970622
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of Color Glass with High Light Transmittance by Pearlescent Pigments and Optical Adhesive.
    Ahn HS; Gasonoo A; Lim SM; Lee JH; Choi Y
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407957
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of highly transparent glasses with broadband antireflective subwavelength structures.
    Song YM; Choi HJ; Yu JS; Lee YT
    Opt Express; 2010 Jun; 18(12):13063-71. PubMed ID: 20588436
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films.
    Zhang J; Li Q; Di X; Liu Z; Xu G
    Nanotechnology; 2008 Oct; 19(43):435606. PubMed ID: 21832701
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes.
    Li Y; Jiang Y; Peng S; Jiang F
    J Hazard Mater; 2010 Oct; 182(1-3):90-6. PubMed ID: 20580490
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simple method for the rapid simultaneous screening of photocatalytic activity over multiple positions of self-cleaning films.
    Kafizas A; Adriaens D; Mills A; Parkin IP
    Phys Chem Chem Phys; 2009 Oct; 11(37):8367-75. PubMed ID: 19756293
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles.
    Park GC; Song YM; Ha JH; Lee YT
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6152-6. PubMed ID: 22121676
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photocatalytic efficiencies of self-cleaning glasses. Influence of physical factors.
    Peruchon L; Puzenat E; Herrmann JM; Guillard C
    Photochem Photobiol Sci; 2009 Jul; 8(7):1040-6. PubMed ID: 19582281
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A one-step mild acid route to fabricate high performance porous anti-reflective optical films from cationic polymeric nanolatex.
    Zhang T; Jia J; Xiao Y; Shen B; Wang Z; Yi X; Qiao X; Zhao Y
    Sci Rep; 2020 Aug; 10(1):14224. PubMed ID: 32848186
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching.
    Yu E; Kim SC; Lee HJ; Oh KH; Moon MW
    Sci Rep; 2015 Mar; 5():9362. PubMed ID: 25791414
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wet-Style Superhydrophobic Antifogging Coatings for Optical Sensors.
    Yoon J; Ryu M; Kim H; Ahn GN; Yim SJ; Kim DP; Lee H
    Adv Mater; 2020 Aug; 32(34):e2002710. PubMed ID: 32656789
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Color variations of AR coatings caused by a leached layer on the substrate.
    Guenther KH
    Appl Opt; 1981 Jan; 20(1):48-53. PubMed ID: 20309065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.