These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 2271709)
21. Changes in stability and allosteric properties of aspartate transcarbamoylase resulting from amino acid substitutions in the zinc-binding domain of the regulatory chains. Eisenstein E; Markby DW; Schachman HK Proc Natl Acad Sci U S A; 1989 May; 86(9):3094-8. PubMed ID: 2566165 [TBL] [Abstract][Full Text] [Related]
22. Site-directed mutagenesis of the lipoate acetyltransferase of Escherichia coli. Russell GC; Guest JR Proc Biol Sci; 1991 Feb; 243(1307):155-60. PubMed ID: 1676519 [TBL] [Abstract][Full Text] [Related]
23. Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp-369-->Asn): a mechanism involving one zinc per active site. Tibbitts TT; Xu X; Kantrowitz ER Protein Sci; 1994 Nov; 3(11):2005-14. PubMed ID: 7703848 [TBL] [Abstract][Full Text] [Related]
24. Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase. Iwasaki W; Sekine S; Kuroishi C; Kuramitsu S; Shirouzu M; Yokoyama S J Mol Biol; 2006 Jul; 360(2):329-42. PubMed ID: 16753178 [TBL] [Abstract][Full Text] [Related]
25. The conserved residues glutamate-37, aspartate-100, and arginine-269 are important for the structural stabilization of Escherichia coli aspartate transcarbamoylase. Baker DP; Kantrowitz ER Biochemistry; 1993 Sep; 32(38):10150-8. PubMed ID: 8104480 [TBL] [Abstract][Full Text] [Related]
26. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study. Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763 [TBL] [Abstract][Full Text] [Related]
27. Pathway of proton transfer in bacterial reaction centers: second-site mutation Asn-M44-->Asp restores electron and proton transfer in reaction centers from the photosynthetically deficient Asp-L213-->Asn mutant of Rhodobacter sphaeroides. Rongey SH; Paddock ML; Feher G; Okamura MY Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1325-9. PubMed ID: 8381964 [TBL] [Abstract][Full Text] [Related]
28. Modulation of a salt link does not affect binding of phosphate to its specific active transport receptor. Yao N; Ledvina PS; Choudhary A; Quiocho FA Biochemistry; 1996 Feb; 35(7):2079-85. PubMed ID: 8652549 [TBL] [Abstract][Full Text] [Related]
29. An examination of the role of asp-177 in the His-Asp catalytic dyad of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase: X-ray structure and pH dependence of kinetic parameters of the D177N mutant enzyme. Cosgrove MS; Gover S; Naylor CE; Vandeputte-Rutten L; Adams MJ; Levy HR Biochemistry; 2000 Dec; 39(49):15002-11. PubMed ID: 11106478 [TBL] [Abstract][Full Text] [Related]
30. Misfolding of chloramphenicol acetyltransferase due to carboxy-terminal truncation can be corrected by second-site mutations. Van der Schueren J; Robben J; Volckaert G Protein Eng; 1998 Dec; 11(12):1211-7. PubMed ID: 9930670 [TBL] [Abstract][Full Text] [Related]
31. Partial revertants of tryptophan synthetase alpha chain active site mutant Asp60-->Asn. Yanofsky C; Yee MC; Horn V J Biol Chem; 1993 Apr; 268(11):8213-20. PubMed ID: 8463331 [TBL] [Abstract][Full Text] [Related]
32. Analysis of a conserved hydrophobic pocket important for the thermostability of Bacillus pumilus chloramphenicol acetyltransferase (CAT-86). Chirakkal H; Ford GC; Moir A Protein Eng; 2001 Mar; 14(3):161-6. PubMed ID: 11342712 [TBL] [Abstract][Full Text] [Related]
33. Acetyl coenzyme A binding by chloramphenicol acetyltransferase. Hydrophobic determinants of recognition and catalysis. Day PJ; Shaw WV J Biol Chem; 1992 Mar; 267(8):5122-7. PubMed ID: 1544895 [TBL] [Abstract][Full Text] [Related]
34. Analysis of the binding of 1,3-diacetylchloramphenicol to chloramphenicol acetyltransferase by isotope-edited 1H NMR and site-directed mutagenesis. Derrick JP; Lian LY; Roberts GC; Shaw WV Biochemistry; 1992 Sep; 31(35):8191-5. PubMed ID: 1525158 [TBL] [Abstract][Full Text] [Related]
35. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B. Fukasawa KM; Hirose J; Hata T; Ono Y Biochemistry; 2006 Sep; 45(38):11425-31. PubMed ID: 16981702 [TBL] [Abstract][Full Text] [Related]
36. His...Asp catalytic dyad of ribonuclease A: conformational stability of the wild-type, D121N, D121A, and H119A enzymes. Quirk DJ; Park C; Thompson JE; Raines RT Biochemistry; 1998 Dec; 37(51):17958-64. PubMed ID: 9922164 [TBL] [Abstract][Full Text] [Related]
37. Three-dimensional structures of mutant forms of E. coli inorganic pyrophosphatase with Asp-->Asn single substitution in positions 42, 65, 70, and 97. Avaeva SM; Rodina EV; Vorobyeva NN; Kurilova SA; Nazarova TI; Sklyankina VA; Oganessyan VY; Samygina VR; Harutyunyan EH Biochemistry (Mosc); 1998 Jun; 63(6):671-84. PubMed ID: 9668207 [TBL] [Abstract][Full Text] [Related]
38. Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis. Sun DP; Sauer U; Nicholson H; Matthews BW Biochemistry; 1991 Jul; 30(29):7142-53. PubMed ID: 1854726 [TBL] [Abstract][Full Text] [Related]
39. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115. Nakamichi Y; Oiki S; Mikami B; Murata K; Hashimoto W Protein J; 2016 Aug; 35(4):300-9. PubMed ID: 27402448 [TBL] [Abstract][Full Text] [Related]
40. Site-directed mutagenesis of the serotonin 5-hydroxytrypamine2 receptor: identification of amino acids necessary for ligand binding and receptor activation. Wang CD; Gallaher TK; Shih JC Mol Pharmacol; 1993 Jun; 43(6):931-40. PubMed ID: 8316224 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]