These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22717303)

  • 1. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities.
    Rowan DJ
    J Environ Radioact; 2013 Jul; 121():2-11. PubMed ID: 22717303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radioactivity levels in major French rivers: summary of monitoring chronicles acquired over the past thirty years and current status.
    Eyrolle F; Claval D; Gontier G; Antonelli C
    J Environ Monit; 2008 Jul; 10(7):800-11. PubMed ID: 18688446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short- and long-term patterns of ¹³⁷Cs in fish and other aquatic organisms of small forest lakes in southern Finland since the Chernobyl accident.
    Rask M; Saxén R; Ruuhijärvi J; Arvola L; Järvinen M; Koskelainen U; Outola I; Vuorinen PJ
    J Environ Radioact; 2012 Jan; 103(1):41-7. PubMed ID: 22036157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model.
    Tateda Y; Tsumune D; Tsubono T
    J Environ Radioact; 2013 Oct; 124():1-12. PubMed ID: 23639689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the dispersion of radionuclides following short duration releases to rivers: Part 2. Uptake by fish.
    Smith JT
    Sci Total Environ; 2006 Sep; 368(2-3):502-18. PubMed ID: 16647745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling (137)Cs bioaccumulation in the salmon-resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident.
    Alava JJ; Gobas FA
    Sci Total Environ; 2016 Feb; 544():56-67. PubMed ID: 26657356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental kinetic rates of food-chain and waterborne radionuclide transfer to freshwater fish: a basis for the construction of fish contamination charts.
    Garnier-Laplace J; Adam C; Baudin JP
    Arch Environ Contam Toxicol; 2000 Aug; 39(2):133-44. PubMed ID: 10871415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of bioaccumulation data for hexachlorobenzene to derive water quality standards according to the EU-WFD methodology.
    Moermond CT; Verbruggen EM
    Integr Environ Assess Manag; 2013 Jan; 9(1):87-97. PubMed ID: 22791265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the dynamics of fish contamination by Chernobyl radiocaesium: an analytical solution based on potassium mass balance.
    Koulikov AO; Meili M
    J Environ Radioact; 2003; 66(3):309-26. PubMed ID: 12600762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccumulation of 137Cs in pelagic food webs in the Norwegian and Barents Seas.
    Heldal HE; Føyn L; Varskog P
    J Environ Radioact; 2003; 65(2):177-85. PubMed ID: 12527234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiocesium (
    Fulghum CM; DiBona ER; Leaphart JC; Korotasz AM; Beasley JC; Bryan AL
    Environ Int; 2019 May; 126():216-221. PubMed ID: 30807958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration.
    DeForest DK; Brix KV; Adams WJ
    Aquat Toxicol; 2007 Aug; 84(2):236-46. PubMed ID: 17673306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different factors determine
    Ishii Y; Matsuzaki SS; Hayashi S
    J Environ Radioact; 2020 Mar; 213():106102. PubMed ID: 31761685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vulnerability of Canadian aquatic ecosystems to nuclear accidents.
    Brinkmann L; Rowan DJ
    Ambio; 2018 Sep; 47(5):585-594. PubMed ID: 29188441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the biological transfer of 32P, 137Cs and 65Zn by fish in the Yenisei River.
    Kryshev AI
    Sci Total Environ; 2004 Apr; 322(1-3):191-207. PubMed ID: 15081748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccumulation of cesium-137 by biota in different aquatic environments.
    Topcuoğlu S
    Chemosphere; 2001 Aug; 44(4):691-5. PubMed ID: 11482657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation of
    Leaphart JC; Wilms KC; Bryan AL; Beasley JC
    J Environ Radioact; 2019 Jul; 203():25-29. PubMed ID: 30849558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of a whole-lake addition of stable cesium on the remobilization of aged 137Cs in a contaminated reservoir.
    Pinder JE; Hinton TG; Whicker FW
    J Environ Radioact; 2005; 80(2):225-43. PubMed ID: 15701385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of ²⁴¹ Am and ¹³⁴Cs bioaccumulation in the king scallop Pecten maximus: investigation via three exposure pathways.
    Metian M; Warnau M; Teyssié JL; Bustamante P
    J Environ Radioact; 2011 Jun; 102(6):543-50. PubMed ID: 21392867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review and model assessment of (32)P and (33)P uptake to biota in freshwater systems.
    Smith JT; Bowes MJ; Cailes CR
    J Environ Radioact; 2011 Apr; 102(4):317-25. PubMed ID: 21324571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.