These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22717325)

  • 21. Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)2], and [OMA][NTf2] in dependence on temperature at atmospheric pressure.
    Fröba AP; Kremer H; Leipertz A
    J Phys Chem B; 2008 Oct; 112(39):12420-30. PubMed ID: 18767789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field.
    Cao H; Wan M; Qiao Y; Zhang S; Li R
    Ultrason Sonochem; 2012 Mar; 19(2):257-63. PubMed ID: 21862375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inside a collapsing bubble: sonoluminescence and the conditions during cavitation.
    Suslick KS; Flannigan DJ
    Annu Rev Phys Chem; 2008; 59():659-83. PubMed ID: 18393682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sonoluminescence quenching in aqueous solutions of aliphatic diols and glycerol.
    Sunartio D; Grieser F; Ashokkumar M
    Ultrason Sonochem; 2009 Jan; 16(1):23-7. PubMed ID: 18693061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of acoustic cavitation bubbles in different sound fields.
    Brotchie A; Grieser F; Ashokkumar M
    J Phys Chem B; 2010 Sep; 114(34):11010-6. PubMed ID: 20698516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variations in the spatial distribution of sonoluminescing bubbles in the presence of an ionic surfactant and electrolyte.
    Lee J; Vakarelski IU; Yasui K; Tuziuti T; Kozuka T; Towata A; Iida Y
    J Phys Chem B; 2010 Mar; 114(8):2572-7. PubMed ID: 20141106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of surfactant amphiphilicity on the phase behavior of IL-based microemulsions.
    Harrar A; Zech O; Klaus A; Bauduin P; Kunz W
    J Colloid Interface Sci; 2011 Oct; 362(2):423-9. PubMed ID: 21784427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects.
    Kanthale P; Ashokkumar M; Grieser F
    Ultrason Sonochem; 2008 Feb; 15(2):143-50. PubMed ID: 17462939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of ultrasonic frequency on Swan band sonoluminescence and sonochemical activity in aqueous tert-butyl alcohol solutions.
    Pflieger R; Ndiaye AA; Chave T; Nikitenko SI
    J Phys Chem B; 2015 Jan; 119(1):284-90. PubMed ID: 25494806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of frequency sweep on sonochemiluminescence and sonoluminescence.
    Lee J; Hallez L; Touyeras F; Ashokkumar M; Hihn JY
    Ultrason Sonochem; 2020 Jun; 64():105047. PubMed ID: 32145517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustic power dependences of sonoluminescence and bubble dynamics.
    Lee HB; Choi PK
    Ultrason Sonochem; 2014 Nov; 21(6):2037-43. PubMed ID: 24582350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of the coalescence of acoustic bubbles as a function of frequency, power, and water-soluble additives.
    Sunartio D; Ashokkumar M; Grieser F
    J Am Chem Soc; 2007 May; 129(18):6031-6. PubMed ID: 17439213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermoreversible gelation of an ionic liquid by crystallization of a dissolved polymer.
    Harner JM; Hoagland DA
    J Phys Chem B; 2010 Mar; 114(10):3411-8. PubMed ID: 20175543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Limitations of the methyl radical recombination method for acoustic cavitation bubble temperature measurements in aqueous solutions.
    Ciawi E; Ashokkumar M; Grieser F
    J Phys Chem B; 2006 May; 110(20):9779-81. PubMed ID: 16706427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A correlation between cavitation bubble temperature, sonoluminescence and interfacial chemistry - A minireview.
    Yusof NSM; Anandan S; Sivashanmugam P; Flores EMM; Ashokkumar M
    Ultrason Sonochem; 2022 Apr; 85():105988. PubMed ID: 35344863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of surface active solutes on bubbles exposed to ultrasound.
    Grieser F; Ashokkumar M
    Adv Colloid Interface Sci; 2001 Jan; 89-90():423-38. PubMed ID: 11215808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal Breakdown Kinetics of 1-Ethyl-3-Methylimidazolium Ethylsulfate Measured Using Quantitative Infrared Spectroscopy.
    Wheeler JL; Pugh M; Atkins SJ; Porter JM
    Appl Spectrosc; 2017 Dec; 71(12):2626-2631. PubMed ID: 28895753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of dissolved gases on sonochemistry and sonoluminescence in a flow reactor.
    Gielen B; Marchal S; Jordens J; Thomassen LC; Braeken L; Van Gerven T
    Ultrason Sonochem; 2016 Jul; 31():463-72. PubMed ID: 26964973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The size of active bubbles for the production of hydrogen in sonochemical reaction field.
    Merouani S; Hamdaoui O
    Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bubble coalescence during acoustic cavitation in aqueous electrolyte solutions.
    Browne C; Tabor RF; Chan DY; Dagastine RR; Ashokkumar M; Grieser F
    Langmuir; 2011 Oct; 27(19):12025-32. PubMed ID: 21866892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.