These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2271766)

  • 1. A computer simulation of the creep process of the cell wall using stress relaxation parameters.
    Yamamoto R; Sakurai N
    Biorheology; 1990; 27(5):759-68. PubMed ID: 2271766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic properties of plant cell walls--II. Effect of pre-extension rate on stress relaxation.
    Fujihara S; Yamamoto R; Masuda Y
    Biorheology; 1978; 15(2):77-85. PubMed ID: 747758
    [No Abstract]   [Full Text] [Related]  

  • 3. Viscoelastic properties of plant cell walls--I. Mathematical formulation for stress relaxation with consideration for pre-extension rate.
    Fujihara S; Yamamoto R; Masuda Y
    Biorheology; 1978; 15(2):63-75. PubMed ID: 747757
    [No Abstract]   [Full Text] [Related]  

  • 4. Viscoelastic properties of plant cell walls--III. Hysteresis loop in the stress-strain curve at constant strain rate.
    Masuda Y
    Biorheology; 1978; 15(2):87-97. PubMed ID: 747759
    [No Abstract]   [Full Text] [Related]  

  • 5. Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate.
    Lin CY; Chen YC; Lin CH; Chang KV
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35632006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the micromechanics of stress-relaxation and creep behaviours in the aortic valve.
    Anssari-Benam A; Screen HRC; Bucchi A
    J Mech Behav Biomed Mater; 2019 May; 93():230-245. PubMed ID: 30844614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrelation of creep and relaxation: a modeling approach for ligaments.
    Lakes RS; Vanderby R
    J Biomech Eng; 1999 Dec; 121(6):612-5. PubMed ID: 10633261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time dependent properties of bovine meniscal attachments: stress relaxation and creep.
    Maes JA; Haut Donahue TL
    J Biomech; 2006; 39(16):3055-61. PubMed ID: 16360161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wall-yielding properties of cell walls from elongating cucumber hypocotyls in relation to the action of expansin.
    Takahashi K; Hirata S; Kido N; Katou K
    Plant Cell Physiol; 2006 Nov; 47(11):1520-9. PubMed ID: 17012740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model for creep, relaxation and strain stiffening in parallel-fibered collagenous tissues.
    Sopakayang R; De Vita R
    Med Eng Phys; 2011 Nov; 33(9):1056-63. PubMed ID: 21622018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical conversion of transient to harmonic response functions for linear viscoelastic materials.
    Buschmann MD
    J Biomech; 1997 Feb; 30(2):197-202. PubMed ID: 9001942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of stability-a new model for stress relaxation in plant cell walls.
    Wei C; Lintilhac PM
    J Theor Biol; 2003 Oct; 224(3):305-12. PubMed ID: 12941589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic properties of plant cell walls. IV. Physical meaning of parameter K in mathematical formulation for stress-relaxation and load-extension processes.
    Fujihara S; Yamamoto R; Masuda Y
    Biorheology; 1979; 16(6):387-96. PubMed ID: 534761
    [No Abstract]   [Full Text] [Related]  

  • 15. Nonlinear viscoelasticity in rabbit medial collateral ligament.
    Hingorani RV; Provenzano PP; Lakes RS; Escarcega A; Vanderby R
    Ann Biomed Eng; 2004 Feb; 32(2):306-12. PubMed ID: 15008379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skinfold creep under load of caliper. Linear visco- and poroelastic model simulations.
    Nowak J; Nowak B; Kaczmarek M
    Acta Bioeng Biomech; 2015; 17(4):39-48. PubMed ID: 26899777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model of the viscoelastic behaviour of skin in vivo and study of anisotropy.
    Khatyr F; Imberdis C; Vescovo P; Varchon D; Lagarde JM
    Skin Res Technol; 2004 May; 10(2):96-103. PubMed ID: 15059176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of plant cell walls probed by relaxation spectra.
    Hansen SL; Ray PM; Karlsson AO; Jørgensen B; Borkhardt B; Petersen BL; Ulvskov P
    Plant Physiol; 2011 Jan; 155(1):246-58. PubMed ID: 21075961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation creep rupture of heterogeneous material under constant strain.
    Hao SW; Zhang BJ; Tian JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):012501. PubMed ID: 22400604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical and viscoelastic properties of skin, SMAS, and composite flaps as they pertain to rhytidectomy.
    Saulis AS; Lautenschlager EP; Mustoe TA
    Plast Reconstr Surg; 2002 Aug; 110(2):590-8; discussion 599-600. PubMed ID: 12142682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.