BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22717760)

  • 1. Convergence of reference frequencies by multiple CF-FM bats (Rhinolophus ferrumequinum nippon) during paired flights evaluated with onboard microphones.
    Furusawa Y; Hiryu S; Kobayasi KI; Riquimaroux H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Sep; 198(9):683-93. PubMed ID: 22717760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.
    Hiryu S; Shiori Y; Hosokawa T; Riquimaroux H; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.
    Matsuta N; Hiryu S; Fujioka E; Yamada Y; Riquimaroux H; Watanabe Y
    J Exp Biol; 2013 Apr; 216(Pt 7):1210-8. PubMed ID: 23487269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight.
    Yamada Y; Hiryu S; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Nov; 202(11):791-801. PubMed ID: 27566319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight.
    Hiryu S; Katsura K; Lin LK; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2005 Dec; 118(6):3927-33. PubMed ID: 16419835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of echolocation calls in the mustached bat, Pteronotus parnellii.
    Vater M; Kössl M; Foeller E; Coro F; Mora E; Russell IJ
    J Neurophysiol; 2003 Oct; 90(4):2274-90. PubMed ID: 14534267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey.
    Mantani S; Hiryu S; Fujioka E; Matsuta N; Riquimaroux H; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Oct; 198(10):741-51. PubMed ID: 22777677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency.
    Metzner W; Zhang S; Smotherman M
    J Exp Biol; 2002 Jun; 205(Pt 11):1607-16. PubMed ID: 12000805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulse-echo interaction in free-flying horseshoe bats, Rhinolophus ferrumequinum nippon.
    Shiori Y; Hiryu S; Watanabe Y; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2009 Sep; 126(3):EL80-5. PubMed ID: 19739702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members.
    Hiryu S; Katsura K; Nagato T; Yamazaki H; Lin LK; Watanabe Y; Riquimaroux H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Aug; 192(8):807-15. PubMed ID: 16538514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Sound duration and sound pattern affect the recovery cycles of inferior collicular neurons in leaf-nosed bat, Hipposideros armiger].
    Tang J; Fu ZY; Wu FJ
    Sheng Li Xue Bao; 2010 Oct; 62(5):469-77. PubMed ID: 20945051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of acoustic navigation behaviour by spatial learning in the echolocating bat Rhinolophus ferrumequinum nippon.
    Yamada Y; Mibe Y; Yamamoto Y; Ito K; Heim O; Hiryu S
    Sci Rep; 2020 Jul; 10(1):10751. PubMed ID: 32612132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doppler-shift compensation by the mustached bat: quantitative data.
    Keating AW; Henson OW; Henson MM; Lancaster WC; Xie DH
    J Exp Biol; 1994 Mar; 188():115-29. PubMed ID: 7964378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of wingbeat motion by bats, correlated with echolocation sound pattern.
    Roverud RC; Nitsche V; Neuweiler G
    J Comp Physiol A; 1991 Feb; 168(2):259-63. PubMed ID: 2046046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing.
    Tian B; Schnitzler HU
    J Acoust Soc Am; 1997 Apr; 101(4):2347-64. PubMed ID: 9104033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information.
    Olsen JF; Suga N
    J Neurophysiol; 1991 Jun; 65(6):1254-74. PubMed ID: 1875241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vocalization of echolocation-like pulses for interindividual interaction in horseshoe bats (Rhinolophus ferrumequinum).
    Kobayasi KI; Hiryu S; Shimozawa R; Riquimaroux H
    J Acoust Soc Am; 2012 Nov; 132(5):EL417-22. PubMed ID: 23145704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different auditory feedback control for echolocation and communication in horseshoe bats.
    Liu Y; Feng J; Metzner W
    PLoS One; 2013; 8(4):e62710. PubMed ID: 23638137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of broadcast harmonics in echo delay perception by big brown bats.
    Stamper SA; Bates ME; Benedicto D; Simmons JA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jan; 195(1):79-89. PubMed ID: 18989677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binaural influences on Doppler shift compensation of the horseshoe bat Rhinolophus rouxi.
    Behrend O; Kössl M; Schuller G
    J Comp Physiol A; 1999 Dec; 185(6):529-38. PubMed ID: 10633554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.