These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 22718440)
1. Assessing the efficacy of specific cerebellomodulatory drugs for use as therapy for spinocerebellar ataxia type 1. Nag N; Tarlac V; Storey E Cerebellum; 2013 Feb; 12(1):74-82. PubMed ID: 22718440 [TBL] [Abstract][Full Text] [Related]
2. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. Watase K; Gatchel JR; Sun Y; Emamian E; Atkinson R; Richman R; Mizusawa H; Orr HT; Shaw C; Zoghbi HY PLoS Med; 2007 May; 4(5):e182. PubMed ID: 17535104 [TBL] [Abstract][Full Text] [Related]
3. Non-invasive detection of neurochemical changes prior to overt pathology in a mouse model of spinocerebellar ataxia type 1. Emir UE; Brent Clark H; Vollmers ML; Eberly LE; Öz G J Neurochem; 2013 Dec; 127(5):660-8. PubMed ID: 24032423 [TBL] [Abstract][Full Text] [Related]
4. The histone deacetylase HDAC3 is essential for Purkinje cell function, potentially complicating the use of HDAC inhibitors in SCA1. Venkatraman A; Hu YS; Didonna A; Cvetanovic M; Krbanjevic A; Bilesimo P; Opal P Hum Mol Genet; 2014 Jul; 23(14):3733-45. PubMed ID: 24594842 [TBL] [Abstract][Full Text] [Related]
5. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Watase K; Weeber EJ; Xu B; Antalffy B; Yuva-Paylor L; Hashimoto K; Kano M; Atkinson R; Sun Y; Armstrong DL; Sweatt JD; Orr HT; Paylor R; Zoghbi HY Neuron; 2002 Jun; 34(6):905-19. PubMed ID: 12086639 [TBL] [Abstract][Full Text] [Related]
6. Creatine-supplemented diet extends Purkinje cell survival in spinocerebellar ataxia type 1 transgenic mice but does not prevent the ataxic phenotype. Kaemmerer WF; Rodrigues CM; Steer CJ; Low WC Neuroscience; 2001; 103(3):713-24. PubMed ID: 11274790 [TBL] [Abstract][Full Text] [Related]
7. Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability. Dell'Orco JM; Wasserman AH; Chopra R; Ingram MA; Hu YS; Singh V; Wulff H; Opal P; Orr HT; Shakkottai VG J Neurosci; 2015 Aug; 35(32):11292-307. PubMed ID: 26269637 [TBL] [Abstract][Full Text] [Related]
8. Progress in pathogenesis studies of spinocerebellar ataxia type 1. Cummings CJ; Orr HT; Zoghbi HY Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1079-81. PubMed ID: 10434309 [TBL] [Abstract][Full Text] [Related]
10. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. Zu T; Duvick LA; Kaytor MD; Berlinger MS; Zoghbi HY; Clark HB; Orr HT J Neurosci; 2004 Oct; 24(40):8853-61. PubMed ID: 15470152 [TBL] [Abstract][Full Text] [Related]
11. Partial loss of ataxin-1 function contributes to transcriptional dysregulation in spinocerebellar ataxia type 1 pathogenesis. Crespo-Barreto J; Fryer JD; Shaw CA; Orr HT; Zoghbi HY PLoS Genet; 2010 Jul; 6(7):e1001021. PubMed ID: 20628574 [TBL] [Abstract][Full Text] [Related]
12. Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. Cvetanovic M; Patel JM; Marti HH; Kini AR; Opal P Nat Med; 2011 Oct; 17(11):1445-7. PubMed ID: 22001907 [TBL] [Abstract][Full Text] [Related]
13. Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. Chintawar S; Hourez R; Ravella A; Gall D; Orduz D; Rai M; Bishop DP; Geuna S; Schiffmann SN; Pandolfo M J Neurosci; 2009 Oct; 29(42):13126-35. PubMed ID: 19846700 [TBL] [Abstract][Full Text] [Related]
14. In vivo monitoring of recovery from neurodegeneration in conditional transgenic SCA1 mice. Oz G; Vollmers ML; Nelson CD; Shanley R; Eberly LE; Orr HT; Clark HB Exp Neurol; 2011 Dec; 232(2):290-8. PubMed ID: 21963649 [TBL] [Abstract][Full Text] [Related]
15. Memantine suppresses the excitotoxicity but fails to rescue the ataxic phenotype in SCA1 model mice. Belozor OS; Vasilev A; Mileiko AG; Mosina LD; Mikhailov IG; Ox DA; Boitsova EB; Shuvaev AN; Teschemacher AG; Kasparov S; Shuvaev AN Biomed Pharmacother; 2024 May; 174():116526. PubMed ID: 38574621 [TBL] [Abstract][Full Text] [Related]
16. Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice. Shuvaev AN; Hosoi N; Sato Y; Yanagihara D; Hirai H J Physiol; 2017 Jan; 595(1):141-164. PubMed ID: 27440721 [TBL] [Abstract][Full Text] [Related]
17. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Brusco A; Gellera C; Cagnoli C; Saluto A; Castucci A; Michielotto C; Fetoni V; Mariotti C; Migone N; Di Donato S; Taroni F Arch Neurol; 2004 May; 61(5):727-33. PubMed ID: 15148151 [TBL] [Abstract][Full Text] [Related]
18. USP7, a ubiquitin-specific protease, interacts with ataxin-1, the SCA1 gene product. Hong S; Kim SJ; Ka S; Choi I; Kang S Mol Cell Neurosci; 2002 Jun; 20(2):298-306. PubMed ID: 12093161 [TBL] [Abstract][Full Text] [Related]
19. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Tang B; Liu C; Shen L; Dai H; Pan Q; Jing L; Ouyang S; Xia J Arch Neurol; 2000 Apr; 57(4):540-4. PubMed ID: 10768629 [TBL] [Abstract][Full Text] [Related]
20. Spinocerebellar ataxia type 1--modeling the pathogenesis of a polyglutamine neurodegenerative disorder in transgenic mice. Clark HB; Orr HT J Neuropathol Exp Neurol; 2000 Apr; 59(4):265-70. PubMed ID: 10759181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]