BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 22718809)

  • 1. Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives.
    Even PC; Nadkarni NA
    Am J Physiol Regul Integr Comp Physiol; 2012 Sep; 303(5):R459-76. PubMed ID: 22718809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical aspects of indirect calorimetry in laboratory animals.
    Even PC; Mokhtarian A; Pele A
    Neurosci Biobehav Rev; 1994; 18(3):435-47. PubMed ID: 7984361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating energy expenditure in mice using an energy balance technique.
    Ravussin Y; Gutman R; LeDuc CA; Leibel RL
    Int J Obes (Lond); 2013 Mar; 37(3):399-403. PubMed ID: 22751256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting energy expenditure per lean body mass determined by indirect calorimetry and bioelectrical impedance analysis in cats.
    Center SA; Warner KL; Randolph JF; Wakshlag JJ; Sunvold GD
    J Vet Intern Med; 2011; 25(6):1341-50. PubMed ID: 22092626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher Daily Energy Expenditure and Respiratory Quotient, Rather Than Fat-Free Mass, Independently Determine Greater ad Libitum Overeating.
    Piaggi P; Thearle MS; Krakoff J; Votruba SB
    J Clin Endocrinol Metab; 2015 Aug; 100(8):3011-20. PubMed ID: 26086330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect Calorimetry to Assess Energy Balance in Mice: Measurement and Data Analysis.
    Rubio WB; Cortopassi MD; Banks AS
    Methods Mol Biol; 2023; 2662():103-115. PubMed ID: 37076674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food intake and energy expenditure are increased in high-fat-sensitive but not in high-carbohydrate-sensitive obesity-prone rats.
    Azzout-Marniche D; Chaumontet C; Nadkarni NA; Piedcoq J; Fromentin G; Tomé D; Even PC
    Am J Physiol Regul Integr Comp Physiol; 2014 Aug; 307(3):R299-309. PubMed ID: 24898839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chronic growth hormone treatment on energy intake and resting energy metabolism in patients with human immunodeficiency virus-associated wasting--a clinical research center study.
    Mulligan K; Tai VW; Schambelan M
    J Clin Endocrinol Metab; 1998 May; 83(5):1542-7. PubMed ID: 9589652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Pseudomonas colonization on body composition and resting energy expenditure in children with cystic fibrosis.
    Vinton NE; Padman R; Davis M; Harcke HT
    JPEN J Parenter Enteral Nutr; 1999; 23(4):233-6. PubMed ID: 10421394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).
    Meyer CW; Reitmeir P; Tschöp MH
    Curr Protoc Mouse Biol; 2015 Sep; 5(3):205-222. PubMed ID: 26331756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals.
    Arch JR; Hislop D; Wang SJ; Speakman JR
    Int J Obes (Lond); 2006 Sep; 30(9):1322-31. PubMed ID: 16801931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deviations in energy sensing predict long-term weight change in overweight Native Americans.
    Basolo A; Votruba SB; Heinitz S; Krakoff J; Piaggi P
    Metabolism; 2018 May; 82():65-71. PubMed ID: 29305947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acutely decreased thermoregulatory energy expenditure or decreased activity energy expenditure both acutely reduce food intake in mice.
    Kaiyala KJ; Morton GJ; Thaler JP; Meek TH; Tylee T; Ogimoto K; Wisse BE
    PLoS One; 2012; 7(8):e41473. PubMed ID: 22936977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy and water metabolism, body composition, and hormonal changes induced by 42 days of enforced inactivity and simulated weightlessness.
    Blanc S; Normand S; Ritz P; Pachiaudi C; Vico L; Gharib C; Gauquelin-Koch G
    J Clin Endocrinol Metab; 1998 Dec; 83(12):4289-97. PubMed ID: 9851766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Components of energy expenditure in tumor-bearing animals.
    Luketich JD; Rigberg D; Banchs R; Shinkwin M; Sigal R; Daly J; Mullen JL
    J Surg Res; 1990 Jun; 48(6):573-8. PubMed ID: 2362417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methodological evaluation of indirect calorimetry data in lean and obese rats.
    Rafecas I; Esteve M; Fernández-López JA; Remesar X; Alemany M
    Clin Exp Pharmacol Physiol; 1993 Nov; 20(11):731-42. PubMed ID: 8306516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex-Biased Physiological Roles of NPFF1R, the Canonical Receptor of RFRP-3, in Food Intake and Metabolic Homeostasis Revealed by its Congenital Ablation in mice.
    Leon S; Velasco I; Vázquez MJ; Barroso A; Beiroa D; Heras V; Ruiz-Pino F; Manfredi-Lozano M; Romero-Ruiz A; Sanchez-Garrido MA; Dieguez C; Pinilla L; Roa J; Nogueiras R; Tena-Sempere M
    Metabolism; 2018 Oct; 87():87-97. PubMed ID: 30075164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased energy expenditure contributes more to the body weight-reducing effect of rimonabant than reduced food intake in candy-fed wistar rats.
    Herling AW; Kilp S; Elvert R; Haschke G; Kramer W
    Endocrinology; 2008 May; 149(5):2557-66. PubMed ID: 18276749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive changes in energy expenditure during mild and severe feed restriction in the rat.
    Even PC; Nicolaïdis S
    Br J Nutr; 1993 Sep; 70(2):421-31. PubMed ID: 8260469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early effects of neutering on energy expenditure in adult male cats.
    Wei A; Fascetti AJ; Kim K; Lee A; Graham JL; Havel PJ; Ramsey JJ
    PLoS One; 2014; 9(2):e89557. PubMed ID: 24586869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.