These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22718982)

  • 1. How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes.
    Hsiao YY; Duh Y; Chen YP; Wang YT; Yuan HS
    Nucleic Acids Res; 2012 Sep; 40(16):8144-54. PubMed ID: 22718982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aromatic residues in RNase T stack with nucleobases to guide the sequence-specific recognition and cleavage of nucleic acids.
    Duh Y; Hsiao YY; Li CL; Huang JC; Yuan HS
    Protein Sci; 2015 Dec; 24(12):1934-41. PubMed ID: 26362012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for RNA trimming by RNase T in stable RNA 3'-end maturation.
    Hsiao YY; Yang CC; Lin CL; Lin JL; Duh Y; Yuan HS
    Nat Chem Biol; 2011 Apr; 7(4):236-43. PubMed ID: 21317904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into DNA repair by RNase T--an exonuclease processing 3' end of structured DNA in repair pathways.
    Hsiao YY; Fang WH; Lee CC; Chen YP; Yuan HS
    PLoS Biol; 2014 Mar; 12(3):e1001803. PubMed ID: 24594808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Inhibitors for the DEDDh Family of Exonucleases and a Unique Inhibition Mechanism by Crystal Structure Analysis of CRN-4 Bound with 2-Morpholin-4-ylethanesulfonate (MES).
    Huang KW; Hsu KC; Chu LY; Yang JM; Yuan HS; Hsiao YY
    J Med Chem; 2016 Sep; 59(17):8019-29. PubMed ID: 27529560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate recognition and catalysis by the exoribonuclease RNase R.
    Vincent HA; Deutscher MP
    J Biol Chem; 2006 Oct; 281(40):29769-75. PubMed ID: 16893880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into RNA unwinding and degradation by RNase R.
    Chu LY; Hsieh TJ; Golzarroshan B; Chen YP; Agrawal S; Yuan HS
    Nucleic Acids Res; 2017 Nov; 45(20):12015-12024. PubMed ID: 29036353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of A-form ssDNA by cryptic RNase H fold exonuclease PF2046.
    Kim J; Sambalkhundev GO; Kim S; Son J; Han AR; Ko SM; Hwang KY; Lee WC
    Arch Biochem Biophys; 2016 Sep; 606():143-50. PubMed ID: 27495739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation.
    Matos RG; Barbas A; Arraiano CM
    Biochem J; 2009 Sep; 423(2):291-301. PubMed ID: 19630750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reaction mechanism of ribonuclease II and its interaction with nucleic acid secondary structures.
    Cannistraro VJ; Kennell D
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):170-87. PubMed ID: 10446370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and biochemical insights into small RNA 3' end trimming by Arabidopsis SDN1.
    Chen J; Liu L; You C; Gu J; Ruan W; Zhang L; Gan J; Cao C; Huang Y; Chen X; Ma J
    Nat Commun; 2018 Sep; 9(1):3585. PubMed ID: 30181559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The physiological role of RNase T can be explained by its unusual substrate specificity.
    Zuo Y; Deutscher MP
    J Biol Chem; 2002 Aug; 277(33):29654-61. PubMed ID: 12050169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into nanoRNA degradation by human Rexo2.
    Chu LY; Agrawal S; Chen YP; Yang WZ; Yuan HS
    RNA; 2019 Jun; 25(6):737-746. PubMed ID: 30926754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus.
    Ishii R; Nureki O; Yokoyama S
    J Biol Chem; 2003 Aug; 278(34):32397-404. PubMed ID: 12746447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a potent DNase activity associated with RNase T of Escherichia coli.
    Viswanathan M; Dower KW; Lovett ST
    J Biol Chem; 1998 Dec; 273(52):35126-31. PubMed ID: 9857048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for 2'-5'-oligoadenylate binding and enzyme activity of a viral RNase L antagonist.
    Ogden KM; Hu L; Jha BK; Sankaran B; Weiss SR; Silverman RH; Patton JT; Prasad BV
    J Virol; 2015 Jul; 89(13):6633-45. PubMed ID: 25878106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and enzymatic properties of a novel RNase II family enzyme from Deinococcus radiodurans.
    Schmier BJ; Seetharaman J; Deutscher MP; Hunt JF; Malhotra A
    J Mol Biol; 2012 Jan; 415(3):547-59. PubMed ID: 22133431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the duplex DNA processing of TREX2.
    Cheng HL; Lin CT; Huang KW; Wang S; Lin YT; Toh SI; Hsiao YY
    Nucleic Acids Res; 2018 Dec; 46(22):12166-12176. PubMed ID: 30357414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover.
    Zuo Y; Zheng H; Wang Y; Chruszcz M; Cymborowski M; Skarina T; Savchenko A; Malhotra A; Minor W
    Structure; 2007 Apr; 15(4):417-28. PubMed ID: 17437714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of key residues for catalysis and RNA cleavage specificity: one mutation turns RNase II into a "SUPER-ENZYME".
    Barbas A; Matos RG; Amblar M; López-Viñas E; Gomez-Puertas P; Arraiano CM
    J Biol Chem; 2009 Jul; 284(31):20486-98. PubMed ID: 19458082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.