These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22718982)

  • 21. Insights into how RNase R degrades structured RNA: analysis of the nuclease domain.
    Vincent HA; Deutscher MP
    J Mol Biol; 2009 Apr; 387(3):570-83. PubMed ID: 19361424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for processivity and single-strand specificity of RNase II.
    Zuo Y; Vincent HA; Zhang J; Wang Y; Deutscher MP; Malhotra A
    Mol Cell; 2006 Oct; 24(1):149-56. PubMed ID: 16996291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the interaction of Saccharomyces cerevisiae strand exchange protein 1 with DNA.
    Johnon AW; Kolodner RD
    J Biol Chem; 1994 Feb; 269(5):3673-81. PubMed ID: 8106412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How RNase R Degrades Structured RNA: ROLE OF THE HELICASE ACTIVITY AND THE S1 DOMAIN.
    Hossain ST; Malhotra A; Deutscher MP
    J Biol Chem; 2016 Apr; 291(15):7877-87. PubMed ID: 26872969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structures of Escherichia coli exonuclease I in complex with single-stranded DNA provide insights into the mechanism of processive digestion.
    Korada SK; Johns TD; Smith CE; Jones ND; McCabe KA; Bell CE
    Nucleic Acids Res; 2013 Jun; 41(11):5887-97. PubMed ID: 23609540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The activity of the Saccharomyces cerevisiae strand exchange protein 1 intrinsic exonuclease during joint molecule formation.
    Johnson AW; Kolodner RD
    J Biol Chem; 1994 Feb; 269(5):3664-72. PubMed ID: 8106411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and mechanistic insights into disease-associated endolysosomal exonucleases PLD3 and PLD4.
    Yuan M; Peng L; Huang D; Gavin A; Luan F; Tran J; Feng Z; Zhu X; Matteson J; Wilson IA; Nemazee D
    Structure; 2024 Jun; 32(6):766-779.e7. PubMed ID: 38537643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CCR4, a 3'-5' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase.
    Chen J; Chiang YC; Denis CL
    EMBO J; 2002 Mar; 21(6):1414-26. PubMed ID: 11889047
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The 5'-exonuclease activity of bacteriophage T4 RNase H is stimulated by the T4 gene 32 single-stranded DNA-binding protein, but its flap endonuclease is inhibited.
    Bhagwat M; Hobbs LJ; Nossal NG
    J Biol Chem; 1997 Nov; 272(45):28523-30. PubMed ID: 9353314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystallographic structure of the nuclease domain of 3'hExo, a DEDDh family member, bound to rAMP.
    Cheng Y; Patel DJ
    J Mol Biol; 2004 Oct; 343(2):305-12. PubMed ID: 15451662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of action of RNase T. I. Identification of residues required for catalysis, substrate binding, and dimerization.
    Zuo Y; Deutscher MP
    J Biol Chem; 2002 Dec; 277(51):50155-9. PubMed ID: 12364334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Examining tRNA 3'-ends in
    Wellner K; Czech A; Ignatova Z; Betat H; Mörl M
    RNA; 2018 Mar; 24(3):361-370. PubMed ID: 29180590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The DNase activity of RNase T and its application to DNA cloning.
    Zuo Y; Deutscher MP
    Nucleic Acids Res; 1999 Oct; 27(20):4077-82. PubMed ID: 10497273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides.
    Abdur R; Gerlits OO; Gan J; Jiang J; Salon J; Kovalevsky AY; Chumanevich AA; Weber IT; Huang Z
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):354-61. PubMed ID: 24531469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The structure of the mammalian RNase H2 complex provides insight into RNA.NA hybrid processing to prevent immune dysfunction.
    Shaban NM; Harvey S; Perrino FW; Hollis T
    J Biol Chem; 2010 Feb; 285(6):3617-3624. PubMed ID: 19923215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recognition and processing of double-stranded DNA by ExoX, a distributive 3'-5' exonuclease.
    Wang T; Sun HL; Cheng F; Zhang XE; Bi L; Jiang T
    Nucleic Acids Res; 2013 Aug; 41(15):7556-65. PubMed ID: 23771145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product.
    Barbas A; Matos RG; Amblar M; López-Viñas E; Gomez-Puertas P; Arraiano CM
    J Biol Chem; 2008 May; 283(19):13070-6. PubMed ID: 18337246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing.
    Zuo Y; Wang Y; Malhotra A
    Structure; 2005 Jul; 13(7):973-84. PubMed ID: 16004870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of the S1 domain in exoribonucleolytic activity: substrate specificity and multimerization.
    Amblar M; Barbas A; Gomez-Puertas P; Arraiano CM
    RNA; 2007 Mar; 13(3):317-27. PubMed ID: 17242308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of the FTO protein reveals basis for its substrate specificity.
    Han Z; Niu T; Chang J; Lei X; Zhao M; Wang Q; Cheng W; Wang J; Feng Y; Chai J
    Nature; 2010 Apr; 464(7292):1205-9. PubMed ID: 20376003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.