These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22719993)

  • 1. Improving disease gene prioritization by comparing the semantic similarity of phenotypes in mice with those of human diseases.
    Oellrich A; Hoehndorf R; Gkoutos GV; Rebholz-Schuhmann D
    PLoS One; 2012; 7(6):e38937. PubMed ID: 22719993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PhenomeNET: a whole-phenome approach to disease gene discovery.
    Hoehndorf R; Schofield PN; Gkoutos GV
    Nucleic Acids Res; 2011 Oct; 39(18):e119. PubMed ID: 21737429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarity-based search of model organism, disease and drug effect phenotypes.
    Hoehndorf R; Gruenberger M; Gkoutos GV; Schofield PN
    J Biomed Semantics; 2015; 6():6. PubMed ID: 25763178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes.
    Alshahrani M; Hoehndorf R
    Bioinformatics; 2018 Sep; 34(17):i901-i907. PubMed ID: 30423077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotype-driven gene prioritization for rare diseases using graph convolution on heterogeneous networks.
    Rao A; Vg S; Joseph T; Kotte S; Sivadasan N; Srinivasan R
    BMC Med Genomics; 2018 Jul; 11(1):57. PubMed ID: 29980210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotype-genotype comorbidity analysis of patients with rare disorders provides insight into their pathological and molecular bases.
    Díaz-Santiago E; Jabato FM; Rojano E; Seoane P; Pazos F; Perkins JR; Ranea JAG
    PLoS Genet; 2020 Oct; 16(10):e1009054. PubMed ID: 33001999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking rare and common disease: mapping clinical disease-phenotypes to ontologies in therapeutic target validation.
    Sarntivijai S; Vasant D; Jupp S; Saunders G; Bento AP; Gonzalez D; Betts J; Hasan S; Koscielny G; Dunham I; Parkinson H; Malone J
    J Biomed Semantics; 2016; 7():8. PubMed ID: 27011785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phen2Disease: a phenotype-driven model for disease and gene prioritization by bidirectional maximum matching semantic similarities.
    Zhai W; Huang X; Shen N; Zhu S
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37248747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of model organism phenotypes to the computational identification of human disease genes.
    Alghamdi SM; Schofield PN; Hoehndorf R
    Dis Model Mech; 2022 Jul; 15(7):. PubMed ID: 35758016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards similarity-based differential diagnostics for common diseases.
    Slater K; Karwath A; Williams JA; Russell S; Makepeace S; Carberry A; Hoehndorf R; Gkoutos GV
    Comput Biol Med; 2021 Jun; 133():104360. PubMed ID: 33836447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel phenotype-disease matching tool for rare genetic diseases.
    Chen J; Xu H; Jegga A; Zhang K; White PS; Zhang G
    Genet Med; 2019 Feb; 21(2):339-346. PubMed ID: 29895857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HPOSim: an R package for phenotypic similarity measure and enrichment analysis based on the human phenotype ontology.
    Deng Y; Gao L; Wang B; Guo X
    PLoS One; 2015; 10(2):e0115692. PubMed ID: 25664462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PhenoRank: reducing study bias in gene prioritization through simulation.
    Cornish AJ; David A; Sternberg MJE
    Bioinformatics; 2018 Jun; 34(12):2087-2095. PubMed ID: 29360927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating phenotype ontologies with PhenomeNET.
    Rodríguez-García MÁ; Gkoutos GV; Schofield PN; Hoehndorf R
    J Biomed Semantics; 2017 Dec; 8(1):58. PubMed ID: 29258588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway-Dependent Effectiveness of Network Algorithms for Gene Prioritization.
    Shim JE; Hwang S; Lee I
    PLoS One; 2015; 10(6):e0130589. PubMed ID: 26091506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A visual and curatorial approach to clinical variant prioritization and disease gene discovery in genome-wide diagnostics.
    James RA; Campbell IM; Chen ES; Boone PM; Rao MA; Bainbridge MN; Lupski JR; Yang Y; Eng CM; Posey JE; Shaw CA
    Genome Med; 2016 Feb; 8(1):13. PubMed ID: 26838676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OPA2Vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2019 Jun; 35(12):2133-2140. PubMed ID: 30407490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating semantic similarity methods for comparison of text-derived phenotype profiles.
    Slater LT; Russell S; Makepeace S; Carberry A; Karwath A; Williams JA; Fanning H; Ball S; Hoehndorf R; Gkoutos GV
    BMC Med Inform Decis Mak; 2022 Feb; 22(1):33. PubMed ID: 35123470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PRIORI-T: A tool for rare disease gene prioritization using MEDLINE.
    Rao A; Joseph T; Saipradeep VG; Kotte S; Sivadasan N; Srinivasan R
    PLoS One; 2020; 15(4):e0231728. PubMed ID: 32315351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.