BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22720135)

  • 21. Critical role of arginine 160 of the EutB protein subunit for active site structure and radical catalysis in coenzyme B12-dependent ethanolamine ammonia-lyase.
    Sun L; Groover OA; Canfield JM; Warncke K
    Biochemistry; 2008 May; 47(20):5523-35. PubMed ID: 18444665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of Cdc25B phosphatase with the small molecule substrate p-nitrophenyl phosphate from QM/MM-MFEP calculations.
    Parks JM; Hu H; Rudolph J; Yang W
    J Phys Chem B; 2009 Apr; 113(15):5217-24. PubMed ID: 19301836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzyme-substrate interactions revealed by the crystal structures of the archaeal Sulfolobus PTP-fold phosphatase and its phosphopeptide complexes.
    Chu HM; Wang AH
    Proteins; 2007 Mar; 66(4):996-1003. PubMed ID: 17173287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CTL0511 from Chlamydia trachomatis Is a Type 2C Protein Phosphatase with Broad Substrate Specificity.
    Claywell JE; Fisher DJ
    J Bacteriol; 2016 Jul; 198(13):1827-1836. PubMed ID: 27114464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co-crystal Structure of
    Li Y; Yao Y; Yang G; Tang J; Ayala GJ; Li X; Zhang W; Han Q; Yang T; Wang H; Mayo KH; Su J
    Front Microbiol; 2020; 11():1050. PubMed ID: 32528448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis.
    Kuo LC; Miller AW; Lee S; Kozuma C
    Biochemistry; 1988 Nov; 27(24):8823-32. PubMed ID: 3072022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B).
    Donella-Deana A; Krinks MH; Ruzzene M; Klee C; Pinna LA
    Eur J Biochem; 1994 Jan; 219(1-2):109-17. PubMed ID: 7508382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate analysis of Arabidopsis PP2C-type protein phosphatases.
    Umbrasaite J; Schweighofer A; Meskiene I
    Methods Mol Biol; 2011; 779():149-61. PubMed ID: 21837565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of Cys12, Cys17 and Arg18 in the catalytic mechanism of low-M(r) cytosolic phosphotyrosine protein phosphatase.
    Cirri P; Chiarugi P; Camici G; Manao G; Raugei G; Cappugi G; Ramponi G
    Eur J Biochem; 1993 Jun; 214(3):647-57. PubMed ID: 8319676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of arginines in coenzyme A binding and catalysis by the phosphotransacetylase from Methanosarcina thermophila.
    Iyer PP; Ferry JG
    J Bacteriol; 2001 Jul; 183(14):4244-50. PubMed ID: 11418565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.
    Fukasawa KM; Hirose J; Hata T; Ono Y
    Biochemistry; 2006 Sep; 45(38):11425-31. PubMed ID: 16981702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of arginine 310 in catalysis and substrate specificity in xanthine dehydrogenase from Rhodobacter capsulatus.
    Pauff JM; Hemann CF; Jünemann N; Leimkühler S; Hille R
    J Biol Chem; 2007 Apr; 282(17):12785-90. PubMed ID: 17327224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterologous expression and catalytic properties of the C-terminal domain of starfish cdc25 dual-specificity phosphatase, a cell cycle regulator.
    Deshimaru S; Miyake Y; Ohmiya T; Tatsu Y; Endo Y; Yumoto N; Toraya T
    J Biochem; 2002 May; 131(5):705-12. PubMed ID: 11983078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression and purification of human calcineurin alpha from Escherichia coli and assessment of catalytic functions of residues surrounding the binuclear metal center.
    Mondragon A; Griffith EC; Sun L; Xiong F; Armstrong C; Liu JO
    Biochemistry; 1997 Apr; 36(16):4934-42. PubMed ID: 9125515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of the conserved aspartate and arginine in the catalytic mechanism of an archaeal beta-class carbonic anhydrase.
    Smith KS; Ingram-Smith C; Ferry JG
    J Bacteriol; 2002 Aug; 184(15):4240-5. PubMed ID: 12107142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. N-Myristoylation is essential for protein phosphatases PPM1A and PPM1B to dephosphorylate their physiological substrates in cells.
    Chida T; Ando M; Matsuki T; Masu Y; Nagaura Y; Takano-Yamamoto T; Tamura S; Kobayashi T
    Biochem J; 2013 Feb; 449(3):741-9. PubMed ID: 23088624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Importance of Arg-599 of β-galactosidase (Escherichia coli) as an anchor for the open conformations of Phe-601 and the active-site loop.
    Dugdale ML; Vance ML; Wheatley RW; Driedger MR; Nibber A; Tran A; Huber RE
    Biochem Cell Biol; 2010 Dec; 88(6):969-79. PubMed ID: 21102659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Residue 259 in protein-tyrosine phosphatase PTP1B and PTPalpha determines the flexibility of glutamine 262.
    Peters GH; Iversen LF; Andersen HS; Møller NP; Olsen OH
    Biochemistry; 2004 Jul; 43(26):8418-28. PubMed ID: 15222753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.