These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 22720412)
1. Effects of fertilizer industry emissions on local soil contamination: a case study of a phosphate plant on the east Mediterranean coast. Kassir LN; Lartiges B; Ouaini N Environ Technol; 2012; 33(7-9):873-85. PubMed ID: 22720412 [TBL] [Abstract][Full Text] [Related]
2. Case study: heavy metals and fluoride contents in the materials of Syrian phosphate industry and in the vicinity of phosphogypsum piles. Al Attar L; Al-Oudat M; Shamali K; Abdul Ghany B; Kanakri S Environ Technol; 2012; 33(1-3):143-52. PubMed ID: 22519097 [TBL] [Abstract][Full Text] [Related]
3. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Nziguheba G; Smolders E Sci Total Environ; 2008 Feb; 390(1):53-7. PubMed ID: 18028985 [TBL] [Abstract][Full Text] [Related]
4. Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. Pérez-López R; Alvarez-Valero AM; Nieto JM J Hazard Mater; 2007 Sep; 148(3):745-50. PubMed ID: 17683858 [TBL] [Abstract][Full Text] [Related]
5. Releases of phosphate fertilizer industry in the surrounding environment: investigation on heavy metals and polonium-210 in soil. Aoun M; El Samrani AG; Lartiges BS; Kazpard V; Saad Z J Environ Sci (China); 2010; 22(9):1387-97. PubMed ID: 21174970 [TBL] [Abstract][Full Text] [Related]
6. Assessment of natural radioactivity in phosphate ore, phosphogypsum and soil samples around a phosphate fertilizer plant in Nigeria. Okeji MC; Agwu KK; Idigo FU Bull Environ Contam Toxicol; 2012 Nov; 89(5):1078-81. PubMed ID: 22965334 [TBL] [Abstract][Full Text] [Related]
7. Distribution of natural radionuclides in the production and use of phosphate fertilizers in Brazil. Saueia CH; Mazzilli BP J Environ Radioact; 2006; 89(3):229-39. PubMed ID: 16849030 [TBL] [Abstract][Full Text] [Related]
8. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods. Santos AJ; Mazzilli BP; Fávaro DI; Silva PS J Environ Radioact; 2006; 87(1):52-61. PubMed ID: 16375997 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns. Cheraghi M; Lorestani B; Merrikhpour H Biol Trace Elem Res; 2012 Jan; 145(1):87-92. PubMed ID: 21826610 [TBL] [Abstract][Full Text] [Related]
10. Role of phosphogypsum and NPK amendments on the retention or leaching of metals in different soils. Ammar R; Kanbar HJ; Kazpard V; Wazne M; El Samrani AG; Amacha N; Saad Z; Chou L J Environ Manage; 2016 Aug; 178():20-29. PubMed ID: 27131954 [TBL] [Abstract][Full Text] [Related]
11. Uranium and trace elements in phosphate fertilizers--Saudi Arabia. Khater AE Health Phys; 2012 Jan; 102(1):63-70. PubMed ID: 22134079 [TBL] [Abstract][Full Text] [Related]
12. Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. Silva LF; Hower JC; Izquierdo M; Querol X Sci Total Environ; 2010 Oct; 408(21):5117-22. PubMed ID: 20701953 [TBL] [Abstract][Full Text] [Related]
13. Soil contamination of heavy metals in the Katedan Industrial Development Area, Hyderabad, India. Govil PK; Sorlie JE; Murthy NN; Sujatha D; Reddy GL; Rudolph-Lund K; Krishna AK; Rama Mohan K Environ Monit Assess; 2008 May; 140(1-3):313-23. PubMed ID: 17694423 [TBL] [Abstract][Full Text] [Related]
14. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Shi G; Chen Z; Xu S; Zhang J; Wang L; Bi C; Teng J Environ Pollut; 2008 Nov; 156(2):251-60. PubMed ID: 18703261 [TBL] [Abstract][Full Text] [Related]
15. Evidence for the accumulation of toxic metal(loid)s in agricultural soils impacted from long-term application of phosphate fertilizer. Hu J; Wang Z; Williams GDZ; Dwyer GS; Gatiboni L; Duckworth OW; Vengosh A Sci Total Environ; 2024 Jan; 907():167863. PubMed ID: 37898199 [TBL] [Abstract][Full Text] [Related]
16. Geochemical features of topsoils in the Gaza Strip: natural occurrence and anthropogenic inputs. Shomar BH; Müller G; Yahya A Environ Res; 2005 Jul; 98(3):372-82. PubMed ID: 15910793 [TBL] [Abstract][Full Text] [Related]
17. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Hernandez L; Probst A; Probst JL; Ulrich E Sci Total Environ; 2003 Aug; 312(1-3):195-219. PubMed ID: 12873411 [TBL] [Abstract][Full Text] [Related]
18. Assessing long-term environmental risks of trace elements in phosphate fertilizers. Chen W; Chang AC; Wu L Ecotoxicol Environ Saf; 2007 May; 67(1):48-58. PubMed ID: 17296225 [TBL] [Abstract][Full Text] [Related]
19. Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection. El Zrelli R; Rabaoui L; Daghbouj N; Abda H; Castet S; Josse C; van Beek P; Souhaut M; Michel S; Bejaoui N; Courjault-Radé P Environ Sci Pollut Res Int; 2018 May; 25(15):14690-14702. PubMed ID: 29532384 [TBL] [Abstract][Full Text] [Related]
20. Trace elements in agroecosystems and impacts on the environment. He ZL; Yang XE; Stoffella PJ J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]