BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22720625)

  • 1. [Effects of composting with earthworm on the chemical and biological properties of agricultural organic wastes: a principal component analysis].
    Liu T; Ren ZL; Zhang C; Chen XF; Zhou B; Dai J
    Ying Yong Sheng Tai Xue Bao; 2012 Mar; 23(3):779-84. PubMed ID: 22720625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Optimal C/N ratio of pig manure-rice straw mixture for its composting with earthworm and maturity assessment of the mixture compost].
    Gao J; Yang JP; Yang H
    Ying Yong Sheng Tai Xue Bao; 2012 Mar; 23(3):765-71. PubMed ID: 22720623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing of different types of organic wastes through vermicomposting.
    Bharadwaj A
    J Environ Sci Eng; 2011 Jul; 53(3):371-4. PubMed ID: 23029940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of organic waste aerobic biodegradation: a new way to correlate respiration kinetics and organic matter fractionation.
    Denes J; Tremier A; Menasseri-Aubry S; Walter C; Gratteau L; Barrington S
    Waste Manag; 2015 Feb; 36():44-56. PubMed ID: 25466391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-optimization of the carbon-to-nitrogen ratio for efficient vermicomposting of chicken manure and waste paper using Eisenia fetida.
    Ravindran B; Mnkeni PN
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):16965-76. PubMed ID: 27197657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical changes during vermicomposting of sago industry solid wastes.
    Subramanian S; Sivarajan M; Saravanapriya S
    J Hazard Mater; 2010 Jul; 179(1-3):318-22. PubMed ID: 20359816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Physico-chemical and microbial properties in thermophilic composting processes of different biological solid wastes].
    Tang JC; Zhou QX; Zhang GH
    Huan Jing Ke Xue; 2007 May; 28(5):1158-64. PubMed ID: 17633196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agriculture wastes.
    Suthar S
    Bioresour Technol; 2007 May; 98(8):1608-14. PubMed ID: 16901690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous thermophilic composting (CTC) for rapid biodegradation and maturation of organic municipal solid waste.
    Xiao Y; Zeng GM; Yang ZH; Shi WJ; Huang C; Fan CZ; Xu ZY
    Bioresour Technol; 2009 Oct; 100(20):4807-13. PubMed ID: 19487122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental study of vermi-biowaste composting for agricultural soil improvement.
    Padmavathiamma PK; Li LY; Kumari UR
    Bioresour Technol; 2008 Apr; 99(6):1672-81. PubMed ID: 17560781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.).
    Sharma K; Garg VK
    Bioresour Technol; 2018 Feb; 250():708-715. PubMed ID: 29223091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composting versus vermicomposting: a comparative study of organic matter evolution through straight and combined processes.
    Fornes F; Mendoza-Hernández D; García-de-la-Fuente R; Abad M; Belda RM
    Bioresour Technol; 2012 Aug; 118():296-305. PubMed ID: 22705537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composting duck excreta enriched wood shavings: C and N transformations and bacterial pathogen reductions.
    Lafond S; Paré T; Dinel H; Schnitzer M; Chambers JR; Jaouich A
    J Environ Sci Health B; 2002 Mar; 37(2):173-86. PubMed ID: 11990371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteria in (vermi)composted organic wastes mostly survive when applied to an arable soil cultivated with wheat (Triticum sp. L.).
    Miranda-Carrazco A; Chávez-López C; Ramírez-Villanueva DA; Dendooven L
    Environ Monit Assess; 2022 Apr; 194(5):363. PubMed ID: 35419663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of carbon degradation during co-composting of exhausted grape marc with different biowastes.
    Fernández FJ; Sánchez-Arias V; Villaseñor J; Rodríguez L
    Chemosphere; 2008 Oct; 73(5):670-7. PubMed ID: 18715609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of Eisenia fetida to the application of different organic wastes in an aluminium-contaminated soil.
    Tejada M; Gómez I; Hernández T; García C
    Ecotoxicol Environ Saf; 2010 Nov; 73(8):1944-9. PubMed ID: 20832115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of earthworm casts and zeolite on the two-stage composting of green waste.
    Zhang L; Sun X
    Waste Manag; 2015 May; 39():119-29. PubMed ID: 25792439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A full-scale study of treatment of pig slurry by composting: kinetic changes in chemical and microbial properties.
    Ros M; García C; Hernández T
    Waste Manag; 2006; 26(10):1108-18. PubMed ID: 16293406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emission of methane and carbon dioxide and earthworm survival during composting of pharmaceutical sludge and spent mycelia.
    Majumdar D; Patel J; Bhatt N; Desai P
    Bioresour Technol; 2006 Mar; 97(4):648-58. PubMed ID: 15907381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient dynamics and decomposition rates during composting of sulphitation pressmud by different methods.
    Chandra R; Kumar N; Tyagi AK
    J Environ Sci Eng; 2007 Jul; 49(3):183-8. PubMed ID: 18476441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.