These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 2272118)

  • 1. Impairment of ATP-linked reactions in mitochondria isolated from skeletal muscle of halothane-sensitive pigs.
    Ayoub S; Monin G; Rock E; Younes A
    Cell Biochem Funct; 1990 Oct; 8(4):205-10. PubMed ID: 2272118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porcine malignant hyperthermia: effects of halothane on mitochondrial respiration and calcium accumulation.
    Britt BA; Endrenyi L; Cadman DL; Fan HM; Fung HY
    Anesthesiology; 1975 Mar; 42(3):292-300. PubMed ID: 163600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy metabolism in muscle approaching maximal rates of oxygen utilization.
    Wilson DF
    Med Sci Sports Exerc; 1995 Jan; 27(1):54-9. PubMed ID: 7898338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs.
    Gueguen N; Lefaucheur L; Fillaut M; Vincent A; Herpin P
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):287-97. PubMed ID: 15649776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial nucleotide translocase from skeletal muscle of halothane sensitive pigs: an electrophoretic study.
    Ayoub S; Berson G; Rock E; Younes A
    Cell Biochem Funct; 1991 Jul; 9(3):193-9. PubMed ID: 1752024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of halothane and decreased PO2 on high energy phosphate levels maintained by isolated rat liver mitochondria.
    Becker GL; Miletich DJ; Albrecht RF
    Anesth Analg; 1986 Nov; 65(11):1130-4. PubMed ID: 3767011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle bioenergetics: a comparative study of mitochondria isolated from pigeon pectoralis, rat soleus, rat biceps brachii, pig biceps femoris and human quadriceps.
    Rasmussen UF; Vielwerth SE; Rasmussen HN
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Feb; 137(2):435-46. PubMed ID: 15123217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of veratrine and veratridine on oxygen consumption and electrical membrane potential of isolated rat skeletal muscle and liver mitochondria.
    Silva Freitas EM; Fagian MM; da Cruz Höfling MA
    Toxicon; 2006 Jun; 47(7):780-7. PubMed ID: 16626771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The halothane gene, energy metabolism, adenosine monophosphate-activated protein kinase, and glycolysis in postmortem pig longissimus dorsi muscle.
    Shen QW; Underwood KR; Means WJ; McCormick RJ; Du M
    J Anim Sci; 2007 Apr; 85(4):1054-61. PubMed ID: 17202397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction to respiratory control in skeletal muscle.
    Starnes JW
    Med Sci Sports Exerc; 1994 Jan; 26(1):27-9. PubMed ID: 8133734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues.
    Latini A; da Silva CG; Ferreira GC; Schuck PF; Scussiato K; Sarkis JJ; Dutra Filho CS; Wyse AT; Wannmacher CM; Wajner M
    Mol Genet Metab; 2005; 86(1-2):188-99. PubMed ID: 15963747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Inhibition of oxidative phosphorylation by coenzyme A at the mitochondrial level in pig heart].
    Gautheron D; Godinot C; Pialoux N
    Bull Soc Chim Biol (Paris); 1967; 49(5):551-67. PubMed ID: 6059793
    [No Abstract]   [Full Text] [Related]  

  • 14. In vivo induced malignant hyperthermia in pigs. II. Metabolism of skeletal muscle mitochondria.
    Ruitenbeek W; Verburg MP; Janssen AJ; Stadhouders AM; Sengers RC
    Acta Anaesthesiol Scand; 1984 Feb; 28(1):9-13. PubMed ID: 6711268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of calcium in the control of respiration by muscle mitochondria.
    McMillin JB; Madden MC
    Med Sci Sports Exerc; 1989 Aug; 21(4):406-10. PubMed ID: 2528667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Space flight effect upon the bioenergetics of the skeletal muscles in rats.
    Mailyan ES; Kovalenko EA
    Life Sci Space Res; 1976; 14():263-7. PubMed ID: 11977281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired resting muscle energetics studied by (31)P-NMR in diet-induced obese rats.
    Chanseaume E; Bielicki G; Tardy AL; Renou JP; Freyssenet D; Boirie Y; Morio B
    Obesity (Silver Spring); 2008 Mar; 16(3):572-7. PubMed ID: 18239558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interrelationship between oxidative energy transformation and energy consumption at mitochondrial and cellular levels.
    Letko G; Küster U; Bohnensack R; Böhme G; Pohl K; Kunz W
    Acta Biol Med Ger; 1982; 41(9):735-50. PubMed ID: 6299035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-dependent effects of calcium on rat retinal mitochondrial respiration: physiological and toxicological studies.
    Medrano CJ; Fox DA
    Toxicol Appl Pharmacol; 1994 Apr; 125(2):309-21. PubMed ID: 8171438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucocorticoid effects on the embryonic chick heart. II. Alteration of oxidative metabolism.
    Peng CF; Elders MJ; Hughes ER; Hicks DC; Straub KD; Murphy ML
    Ann Clin Lab Sci; 1982; 12(6):484-91. PubMed ID: 7181441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.