These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 22721548)
1. Osteochondral interface generation by rabbit bone marrow stromal cells and osteoblasts coculture. Chen K; Teh TK; Ravi S; Toh SL; Goh JC Tissue Eng Part A; 2012 Sep; 18(17-18):1902-11. PubMed ID: 22721548 [TBL] [Abstract][Full Text] [Related]
2. In vitro generation of whole osteochondral constructs using rabbit bone marrow stromal cells, employing a two-chambered co-culture well design. Chen K; Ng KS; Ravi S; Goh JC; Toh SL J Tissue Eng Regen Med; 2016 Apr; 10(4):294-304. PubMed ID: 23495238 [TBL] [Abstract][Full Text] [Related]
3. In vitro generation of a multilayered osteochondral construct with an osteochondral interface using rabbit bone marrow stromal cells and a silk peptide-based scaffold. Chen K; Shi P; Teh TK; Toh SL; Goh JCh J Tissue Eng Regen Med; 2016 Apr; 10(4):284-93. PubMed ID: 23413023 [TBL] [Abstract][Full Text] [Related]
4. In vitro ligament-bone interface regeneration using a trilineage coculture system on a hybrid silk scaffold. He P; Ng KS; Toh SL; Goh JC Biomacromolecules; 2012 Sep; 13(9):2692-703. PubMed ID: 22880933 [TBL] [Abstract][Full Text] [Related]
5. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. Acharya C; Adesida A; Zajac P; Mumme M; Riesle J; Martin I; Barbero A J Cell Physiol; 2012 Jan; 227(1):88-97. PubMed ID: 22025108 [TBL] [Abstract][Full Text] [Related]
6. Engineering osteochondral constructs through spatial regulation of endochondral ossification. Sheehy EJ; Vinardell T; Buckley CT; Kelly DJ Acta Biomater; 2013 Mar; 9(3):5484-92. PubMed ID: 23159563 [TBL] [Abstract][Full Text] [Related]
7. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Wu L; Prins HJ; Helder MN; van Blitterswijk CA; Karperien M Tissue Eng Part A; 2012 Aug; 18(15-16):1542-51. PubMed ID: 22429306 [TBL] [Abstract][Full Text] [Related]
8. The effect of insulin-loaded chitosan particle-aggregated scaffolds in chondrogenic differentiation. Malafaya PB; Oliveira JT; Reis RL Tissue Eng Part A; 2010 Feb; 16(2):735-47. PubMed ID: 19772454 [TBL] [Abstract][Full Text] [Related]
9. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice]. Liu X; Zhou GD; Lü XJ; Liu TY; Zhang WJ; Liu W; Cao YL Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1929-33. PubMed ID: 17923021 [TBL] [Abstract][Full Text] [Related]
10. Effects of chondrogenic microenvironment on construction of cartilage tissues using marrow stromal cells in vitro. Miao C; Mu S; Duan P; Liang X; Yang B; Zhou G; Tang S Artif Cells Blood Substit Immobil Biotechnol; 2009; 37(5):214-21. PubMed ID: 19757234 [TBL] [Abstract][Full Text] [Related]
11. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering. Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181 [TBL] [Abstract][Full Text] [Related]
12. An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. Zhang L; Yuan T; Guo L; Zhang X J Biomed Mater Res A; 2012 Oct; 100(10):2717-25. PubMed ID: 22623365 [TBL] [Abstract][Full Text] [Related]
13. Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells. Matthies NF; Mulet-Sierra A; Jomha NM; Adesida AB J Tissue Eng Regen Med; 2013 Dec; 7(12):965-73. PubMed ID: 22473741 [TBL] [Abstract][Full Text] [Related]
14. [Experimental study of in vitro chondrogenesis by co-culture of bone marrow stromal cells and chondrocytes]. Zhou GD; Miao CL; Wang XY; Liu TY; Cui L; Liu W; Cao YL Zhonghua Yi Xue Za Zhi; 2004 Oct; 84(20):1716-20. PubMed ID: 15569434 [TBL] [Abstract][Full Text] [Related]
15. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Zhou J; Xu C; Wu G; Cao X; Zhang L; Zhai Z; Zheng Z; Chen X; Wang Y Acta Biomater; 2011 Nov; 7(11):3999-4006. PubMed ID: 21757035 [TBL] [Abstract][Full Text] [Related]
16. Mesenchymal stem cells downregulate articular chondrocyte differentiation in noncontact coculture systems: implications in cartilage tissue regeneration. Xu L; Wang Q; Xu F; Ye Z; Zhou Y; Tan WS Stem Cells Dev; 2013 Jun; 22(11):1657-69. PubMed ID: 23301843 [TBL] [Abstract][Full Text] [Related]
17. A Silk Fibroin and Peptide Amphiphile-Based Co-Culture Model for Osteochondral Tissue Engineering. Çakmak S; Çakmak AS; Kaplan DL; Gümüşderelioğlu M Macromol Biosci; 2016 Aug; 16(8):1212-26. PubMed ID: 27139244 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812 [TBL] [Abstract][Full Text] [Related]
19. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure. Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974 [TBL] [Abstract][Full Text] [Related]
20. The influence of an in vitro generated bone-like extracellular matrix on osteoblastic gene expression of marrow stromal cells. Pham QP; Kasper FK; Scott Baggett L; Raphael RM; Jansen JA; Mikos AG Biomaterials; 2008 Jun; 29(18):2729-39. PubMed ID: 18367245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]