BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 22721938)

  • 1. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.
    Yoo D
    Med Eng Phys; 2012 Jul; 34(6):762-76. PubMed ID: 22721938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unit cell-based computer-aided manufacturing system for tissue engineering.
    Kang HW; Park JH; Kang TY; Seol YJ; Cho DW
    Biofabrication; 2012 Mar; 4(1):015005. PubMed ID: 22361671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual topological optimisation of scaffolds for rapid prototyping.
    Almeida Hde A; Bártolo PJ
    Med Eng Phys; 2010 Sep; 32(7):775-82. PubMed ID: 20620093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New paradigms in hierarchical porous scaffold design for tissue engineering.
    Yoo D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1759-72. PubMed ID: 23827634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous scaffold design using the distance field and triply periodic minimal surface models.
    Yoo DJ
    Biomaterials; 2011 Nov; 32(31):7741-54. PubMed ID: 21798592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprinting endothelial cells with alginate for 3D tissue constructs.
    Khalil S; Sun W
    J Biomech Eng; 2009 Nov; 131(11):111002. PubMed ID: 20353253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered tissue scaffolds with variational porous architecture.
    Khoda AK; Ozbolat IT; Koc B
    J Biomech Eng; 2011 Jan; 133(1):011001. PubMed ID: 21186891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Current progress of fabricating tissue engineering scaffold using rapid prototyping techniques].
    Li X; Wang C
    Sheng Wu Gong Cheng Xue Bao; 2008 Aug; 24(8):1321-6. PubMed ID: 18998530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.
    Dias MR; Guedes JM; Flanagan CL; Hollister SJ; Fernandes PR
    Med Eng Phys; 2014 Apr; 36(4):448-57. PubMed ID: 24636449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triply Periodic Minimal Surfaces (TPMS) for the Generation of Porous Architectures Using Stereolithography.
    Blanquer SBG; Grijpma DW
    Methods Mol Biol; 2021; 2147():19-30. PubMed ID: 32840807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds.
    Saito E; Liu Y; Migneco F; Hollister SJ
    Acta Biomater; 2012 Jul; 8(7):2568-77. PubMed ID: 22446030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstereolithography-based computer-aided manufacturing for tissue engineering.
    Cho DW; Kang HW
    Methods Mol Biol; 2012; 868():341-56. PubMed ID: 22692621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties.
    Valainis D; Dondl P; Foehr P; Burgkart R; Kalkhof S; Duda GN; van Griensven M; Poh PSP
    Biomed Mater; 2019 Sep; 14(6):065002. PubMed ID: 31387088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding.
    Lee KW; Wang S; Lu L; Jabbari E; Currier BL; Yaszemski MJ
    Tissue Eng; 2006 Oct; 12(10):2801-11. PubMed ID: 17518649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of rapid prototyping techniques for tissue engineering purposes.
    Peltola SM; Melchels FP; Grijpma DW; Kellomäki M
    Ann Med; 2008; 40(4):268-80. PubMed ID: 18428020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds.
    Blanquer SBG; Werner M; Hannula M; Sharifi S; Lajoinie GPR; Eglin D; Hyttinen J; Poot AA; Grijpma DW
    Biofabrication; 2017 Apr; 9(2):025001. PubMed ID: 28402967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering.
    Castro APG; Ruben RB; Gonçalves SB; Pinheiro J; Guedes JM; Fernandes PR
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):567-573. PubMed ID: 30773050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic scaffolds using triply periodic minimal surface-based porous structures for biomedical applications.
    Pugliese R; Graziosi S
    SLAS Technol; 2023 Jun; 28(3):165-182. PubMed ID: 37127136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating novel technologies to fabricate smart scaffolds.
    Moroni L; de Wijn JR; van Blitterswijk CA
    J Biomater Sci Polym Ed; 2008; 19(5):543-72. PubMed ID: 18419938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.