BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22721945)

  • 1. Role of ATP and adenosine on carotid body function during development.
    Bairam A; Niane LM; Joseph V
    Respir Physiol Neurobiol; 2013 Jan; 185(1):57-66. PubMed ID: 22721945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxic intensity: a determinant for the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity.
    Conde SV; Monteiro EC; Rigual R; Obeso A; Gonzalez C
    J Appl Physiol (1985); 2012 Jun; 112(12):2002-10. PubMed ID: 22500005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic caffeine intake in adult rat inhibits carotid body sensitization produced by chronic sustained hypoxia but maintains intact chemoreflex output.
    Conde SV; Ribeiro MJ; Obeso A; Rigual R; Monteiro EC; Gonzalez C
    Mol Pharmacol; 2012 Dec; 82(6):1056-65. PubMed ID: 22930709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiles for ATP and adenosine release at the carotid body in response to O2 concentrations.
    Conde SV; Monteiro EC
    Adv Exp Med Biol; 2006; 580():179-84; discussion 351-9. PubMed ID: 16683716
    [No Abstract]   [Full Text] [Related]  

  • 5. Contribution of adenosine and ATP to the carotid body chemosensory activity in ageing.
    Sacramento JF; Olea E; Ribeiro MJ; Prieto-Lloret J; Melo BF; Gonzalez C; Martins FO; Monteiro EC; Conde SV
    J Physiol; 2019 Oct; 597(19):4991-5008. PubMed ID: 31426127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of carotid body chemoreflexes after neonatal intermittent hypoxia and caffeine treatment in rat pups.
    Julien CA; Joseph V; Bairam A
    Respir Physiol Neurobiol; 2011 Aug; 177(3):301-12. PubMed ID: 21609788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine in peripheral chemoreception: new insights into a historically overlooked molecule--invited article.
    Conde SV; Monteiro EC; Obeso A; Gonzalez C
    Adv Exp Med Biol; 2009; 648():145-59. PubMed ID: 19536476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of chronic caffeine intake on carotid body catecholamine dynamics in control and chronically hypoxic rats.
    Conde SV; Obeso A; Monteiro EC; Gonzalez C
    Adv Exp Med Biol; 2012; 758():315-23. PubMed ID: 23080178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine A₂a receptors and O₂ sensing in development.
    Koos BJ
    Am J Physiol Regul Integr Comp Physiol; 2011 Sep; 301(3):R601-22. PubMed ID: 21677265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP inhibits the hypoxia response in type I cells of rat carotid bodies.
    Xu J; Xu F; Tse FW; Tse A
    J Neurochem; 2005 Mar; 92(6):1419-30. PubMed ID: 15748160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expressions of angiotensin and cytokine receptors in the paracrine signaling of the carotid body in hypoxia and sleep apnea.
    Fung ML
    Respir Physiol Neurobiol; 2015 Apr; 209():6-12. PubMed ID: 25266394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventilatory and carotid body chemoreceptor responses to purinergic P2X receptor antagonists in newborn rats.
    Niane LM; Donnelly DF; Joseph V; Bairam A
    J Appl Physiol (1985); 2011 Jan; 110(1):83-94. PubMed ID: 21051571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia induces adenosine release from the rat carotid body.
    Conde SV; Monteiro EC
    J Neurochem; 2004 Jun; 89(5):1148-56. PubMed ID: 15147507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amperometric ATP microbiosensors for the analysis of chemosensitivity at rat carotid bodies.
    Masson JF; Kranz C; Mizaikoff B; Gauda EB
    Anal Chem; 2008 Jun; 80(11):3991-8. PubMed ID: 18457410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors.
    Conde SV; Obeso A; Vicario I; Rigual R; Rocher A; Gonzalez C
    J Neurochem; 2006 Jul; 98(2):616-28. PubMed ID: 16805851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic hypoxia modulates the function and expression of melatonin receptors in the rat carotid body.
    Tjong YW; Chen Y; Liong EC; Tipoe GL; Fung ML
    J Pineal Res; 2006 Mar; 40(2):125-34. PubMed ID: 16441549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The human carotid body releases acetylcholine, ATP and cytokines during hypoxia.
    Kåhlin J; Mkrtchian S; Ebberyd A; Hammarstedt-Nordenvall L; Nordlander B; Yoshitake T; Kehr J; Prabhakar N; Poellinger L; Fagerlund MJ; Eriksson LI
    Exp Physiol; 2014 Aug; 99(8):1089-98. PubMed ID: 24887113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purinergic modulation of carotid body glomus cell hypoxia response during postnatal maturation in rats.
    Carroll JL; Agarwal A; Donnelly DF; Kim I
    Adv Exp Med Biol; 2012; 758():249-53. PubMed ID: 23080169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity.
    Peng YJ; Prabhakar NR
    J Appl Physiol (1985); 2004 Mar; 96(3):1236-42; discussion 1196. PubMed ID: 14660510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body.
    Buttigieg J; Nurse CA
    Biochem Biophys Res Commun; 2004 Sep; 322(1):82-7. PubMed ID: 15313176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.