BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22722061)

  • 1. Effects of cryoprotectant addition and washout methods on the viability of precision-cut liver slices.
    Guan N; Blomsma SA; van Midwoud PM; Fahy GM; Groothuis GM; de Graaf IA
    Cryobiology; 2012 Dec; 65(3):179-87. PubMed ID: 22722061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryopreservation of rat precision-cut liver and kidney slices by rapid freezing and vitrification.
    de Graaf IA; Draaisma AL; Schoeman O; Fahy GM; Groothuis GM; Koster HJ
    Cryobiology; 2007 Feb; 54(1):1-12. PubMed ID: 17166492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryoprotective agent toxicity interactions in human articular chondrocytes.
    Almansoori KA; Prasad V; Forbes JF; Law GK; McGann LE; Elliott JA; Jomha NM
    Cryobiology; 2012 Jun; 64(3):185-91. PubMed ID: 22274740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water crystallization within rat precision-cut liver slices in relation to their viability.
    de Graaf IA; Koster HJ
    Cryobiology; 2001 Nov; 43(3):224-37. PubMed ID: 11888216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function.
    Benson JD; Kearsley AJ; Higgins AZ
    Cryobiology; 2012 Jun; 64(3):144-51. PubMed ID: 22248796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical efflux of cryoprotective agents from vitrified human articular cartilage.
    Yu H; Al-Abbasi KK; Elliott JA; McGann LE; Jomha NM
    Cryobiology; 2013 Apr; 66(2):121-5. PubMed ID: 23291303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forced-convective vitrification with liquid cryogens.
    Lyu SR; Huang JH; Shih WH; Chen YJ; Hsieh WH
    Cryobiology; 2013 Jun; 66(3):318-25. PubMed ID: 23545291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryopreservation of rat hippocampal slices by vitrification.
    Pichugin Y; Fahy GM; Morin R
    Cryobiology; 2006 Apr; 52(2):228-40. PubMed ID: 16403489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Personalisation' of droplet-vitrification protocols for plant cells: a systematic approach to optimising chemical and osmotic effects.
    Kim HH; Lee SC
    Cryo Letters; 2012; 33(4):271-9. PubMed ID: 22987238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical prediction of the vitrifiability and glass stability of multi-component cryoprotective agent solutions.
    Weiss AD; Forbes JF; Scheuerman A; Law GK; Elliott JA; McGann LE; Jomha NM
    Cryobiology; 2010 Aug; 61(1):123-7. PubMed ID: 20558152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method to measure cryoprotectant permeation into intact articular cartilage.
    Sharma R; Law GK; Rekieh K; Abazari A; Elliott JA; McGann LE; Jomha NM
    Cryobiology; 2007 Apr; 54(2):196-203. PubMed ID: 17379205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-Guided Design and Optimization of CPA Perfusion Protocols for Whole Organ Cryopreservation.
    Han Z; Rao JS; Ramesh S; Hergesell J; Namsrai BE; Etheridge ML; Finger EB; Bischof JC
    Ann Biomed Eng; 2023 Oct; 51(10):2216-2228. PubMed ID: 37351756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isochoric vitrification: An experimental study to establish proof of concept.
    Zhang Y; Ukpai G; Grigoropoulos A; Powell-Palm MJ; Weegman BP; Taylor MJ; Rubinsky B
    Cryobiology; 2018 Aug; 83():48-55. PubMed ID: 29908947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved vitrification solutions based on the predictability of vitrification solution toxicity.
    Fahy GM; Wowk B; Wu J; Paynter S
    Cryobiology; 2004 Feb; 48(1):22-35. PubMed ID: 14969679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport processes in equine oocytes and ovarian tissue during loading with cryoprotective solutions.
    Lotz J; Içli S; Liu D; Caliskan S; Sieme H; Wolkers WF; Oldenhof H
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129797. PubMed ID: 33212229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water.
    Devireddy RV
    Mol Reprod Dev; 2005 Mar; 70(3):333-43. PubMed ID: 15625698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures.
    Wang L; Liu J; Zhou GB; Hou YP; Li JJ; Zhu SE
    Biol Reprod; 2011 Nov; 85(5):884-94. PubMed ID: 21697515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic method reduces osmotic stress injury to oocytes during cryoprotectant addition and removal processes in porcine oocytes.
    Guo Y; Yang Y; Yi X; Zhou X
    Cryobiology; 2019 Oct; 90():63-70. PubMed ID: 31449779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethylene glycol and glycerol loading and unloading in porcine meniscal tissue.
    Takroni TA; Yu H; Laouar L; Adesida AB; Elliott JAW; Jomha NM
    Cryobiology; 2017 Feb; 74():50-60. PubMed ID: 27956221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryoprotectant delivery and removal from murine insulinomas at vitrification-relevant concentrations.
    Mukherjee IN; Song YC; Sambanis A
    Cryobiology; 2007 Aug; 55(1):10-8. PubMed ID: 17533114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.