These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 22722608)
1. Coordination between RAB GTPase and phosphoinositide regulation and functions. Jean S; Kiger AA Nat Rev Mol Cell Biol; 2012 Jun; 13(7):463-70. PubMed ID: 22722608 [TBL] [Abstract][Full Text] [Related]
2. Rab35 GTPase: A Central Regulator of Phosphoinositides and F-actin in Endocytic Recycling and Beyond. Klinkert K; Echard A Traffic; 2016 Oct; 17(10):1063-77. PubMed ID: 27329675 [TBL] [Abstract][Full Text] [Related]
3. Analysis of Rab GTPase-effector interactions by bimolecular fluorescence complementation. Ito E; Ueda T Methods Mol Biol; 2014; 1209():97-105. PubMed ID: 25117277 [TBL] [Abstract][Full Text] [Related]
8. Structural basis of membrane trafficking by Rab family small G protein. Park HH Int J Mol Sci; 2013 Apr; 14(5):8912-23. PubMed ID: 23698755 [TBL] [Abstract][Full Text] [Related]
9. Pairing phosphoinositides with calcium ions in endolysosomal dynamics: phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of calcium channels in the endolysosomes. Shen D; Wang X; Xu H Bioessays; 2011 Jun; 33(6):448-57. PubMed ID: 21538413 [TBL] [Abstract][Full Text] [Related]
10. Ypt/rab gtpases: regulators of protein trafficking. Segev N Sci STKE; 2001 Sep; 2001(100):re11. PubMed ID: 11579231 [TBL] [Abstract][Full Text] [Related]
11. Regulation of membrane traffic by Rab GEF and GAP cascades. Novick P Small GTPases; 2016 Oct; 7(4):252-256. PubMed ID: 27427966 [TBL] [Abstract][Full Text] [Related]
13. Rabs and their effectors: achieving specificity in membrane traffic. Grosshans BL; Ortiz D; Novick P Proc Natl Acad Sci U S A; 2006 Aug; 103(32):11821-7. PubMed ID: 16882731 [TBL] [Abstract][Full Text] [Related]
14. Toward a comprehensive map of the effectors of rab GTPases. Gillingham AK; Sinka R; Torres IL; Lilley KS; Munro S Dev Cell; 2014 Nov; 31(3):358-373. PubMed ID: 25453831 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylation of Rab GTPases in the regulation of membrane trafficking. Waschbüsch D; Khan AR Traffic; 2020 Nov; 21(11):712-719. PubMed ID: 32969543 [TBL] [Abstract][Full Text] [Related]
16. Ypt/Rab GTPases: principles learned from yeast. Lipatova Z; Hain AU; Nazarko VY; Segev N Crit Rev Biochem Mol Biol; 2015; 50(3):203-11. PubMed ID: 25702751 [TBL] [Abstract][Full Text] [Related]
17. A GTPase-activating protein controls Rab5 function in endocytic trafficking. Haas AK; Fuchs E; Kopajtich R; Barr FA Nat Cell Biol; 2005 Sep; 7(9):887-93. PubMed ID: 16086013 [TBL] [Abstract][Full Text] [Related]
18. Rab GTPases: Switching to Human Diseases. Guadagno NA; Progida C Cells; 2019 Aug; 8(8):. PubMed ID: 31426400 [TBL] [Abstract][Full Text] [Related]
19. How can mammalian Rab small GTPases be comprehensively analyzed?: Development of new tools to comprehensively analyze mammalian Rabs in membrane traffic. Fukuda M Histol Histopathol; 2010 Nov; 25(11):1473-80. PubMed ID: 20865669 [TBL] [Abstract][Full Text] [Related]
20. Regulation of membrane transport by rab GTPases. Deneka M; Neeft M; van der Sluijs P Crit Rev Biochem Mol Biol; 2003; 38(2):121-42. PubMed ID: 12749696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]