BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22722645)

  • 21. Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples.
    Siegrist J; Gorkin R; Bastien M; Stewart G; Peytavi R; Kido H; Bergeron M; Madou M
    Lab Chip; 2010 Feb; 10(3):363-71. PubMed ID: 20091009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling the length and location of in situ formed nanowires by means of microfluidic tools.
    Kuhn P; Puigmartí-Luis J; Imaz I; Maspoch D; Dittrich PS
    Lab Chip; 2011 Feb; 11(4):753-7. PubMed ID: 21135966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors.
    Tian R; Regonda S; Gao J; Liu Y; Hu W
    Lab Chip; 2011 Jun; 11(11):1952-61. PubMed ID: 21505681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-quality ZnO nanowire arrays directly fabricated from photoresists.
    Cheng C; Lei M; Feng L; Wong TL; Ho KM; Fung KK; Loy MM; Yu D; Wang N
    ACS Nano; 2009 Jan; 3(1):53-8. PubMed ID: 19206248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid microfluidics: a digital-to-channel interface for in-line sample processing and chemical separations.
    Abdelgawad M; Watson MW; Wheeler AR
    Lab Chip; 2009 Apr; 9(8):1046-51. PubMed ID: 19350085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid spatial and temporal controlled signal delivery over large cell culture areas.
    VanDersarl JJ; Xu AM; Melosh NA
    Lab Chip; 2011 Sep; 11(18):3057-63. PubMed ID: 21805010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical cytometry on microfluidic chips.
    Yan H; Zhang B; Wu H
    Electrophoresis; 2008 May; 29(9):1775-86. PubMed ID: 18384067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence enhancement and multiple protein detection in ZnO nanostructure microfluidic devices.
    Sang CH; Chou SJ; Pan FM; Sheu JT
    Biosens Bioelectron; 2016 Jan; 75():285-92. PubMed ID: 26322591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On-chip cell lysis by local hydroxide generation.
    Di Carlo D; Ionescu-Zanetti C; Zhang Y; Hung P; Lee LP
    Lab Chip; 2005 Feb; 5(2):171-8. PubMed ID: 15672131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species.
    Patolsky F; Zheng G; Lieber CM
    Nat Protoc; 2006; 1(4):1711-24. PubMed ID: 17487154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterizing doxorubicin-induced apoptosis in HepG2 cells using an integrated microfluidic device.
    Ye N; Qin J; Liu X; Shi W; Lin B
    Electrophoresis; 2007 Apr; 28(7):1146-53. PubMed ID: 17330224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Digital microfluidic method for protein extraction by precipitation.
    Jebrail MJ; Wheeler AR
    Anal Chem; 2009 Jan; 81(1):330-5. PubMed ID: 19117460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electroporation of micro-droplet encapsulated HeLa cells in oil phase.
    Xiao K; Zhang M; Chen S; Wang L; Chang DC; Wen W
    Electrophoresis; 2010 Sep; 31(18):3175-80. PubMed ID: 20803502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid, highly efficient extraction and purification of membrane proteins using a microfluidic continuous-flow based aqueous two-phase system.
    Hu R; Feng X; Chen P; Fu M; Chen H; Guo L; Liu BF
    J Chromatogr A; 2011 Jan; 1218(1):171-7. PubMed ID: 21112057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleic acids detection using cationic fluorescent polymer based on one-dimensional microfluidic beads array.
    Yang X; Zhao X; Zuo X; Wang K; Wen J; Zhang H
    Talanta; 2009 Jan; 77(3):1027-31. PubMed ID: 19064086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies.
    Xu C; Wang X; Wang ZL
    J Am Chem Soc; 2009 Apr; 131(16):5866-72. PubMed ID: 19338339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Miniaturization and parallelization of biological and chemical assays in microfluidic devices.
    Vyawahare S; Griffiths AD; Merten CA
    Chem Biol; 2010 Oct; 17(10):1052-65. PubMed ID: 21035727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative full-colour transmitted light microscopy and dyes for concentration mapping and measurement of diffusion coefficients in microfluidic architectures.
    Werts MH; Raimbault V; Texier-Picard R; Poizat R; Français O; Griscom L; Navarro JR
    Lab Chip; 2012 Feb; 12(4):808-20. PubMed ID: 22228225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Standardization of microfluidic cell cultures using integrated organic photodiodes and electrode arrays.
    Charwat V; Purtscher M; Tedde SF; Hayden O; Ertl P
    Lab Chip; 2013 Mar; 13(5):785-97. PubMed ID: 23254868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.