These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22723022)

  • 1. Effect of device design on the in vitro performance and comparability for capsule-based dry powder inhalers.
    Shur J; Lee S; Adams W; Lionberger R; Tibbatts J; Price R
    AAPS J; 2012 Dec; 14(4):667-76. PubMed ID: 22723022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Device Design and Formulation on the In Vitro Comparability for Multi-Unit Dose Dry Powder Inhalers.
    Shur J; Saluja B; Lee S; Tibbatts J; Price R
    AAPS J; 2015 Sep; 17(5):1105-16. PubMed ID: 25956383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dry powder inhaler device influence on carrier particle performance.
    Donovan MJ; Kim SH; Raman V; Smyth HD
    J Pharm Sci; 2012 Mar; 101(3):1097-107. PubMed ID: 22095397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of dry powder inhaler (DPI) resistance and aerosol dispersion timing on emitted aerosol aerodynamic particle sizing by multistage cascade impactor when sampled volume is reduced from compendial value of 4 L.
    Mohammed H; Arp J; Chambers F; Copley M; Glaab V; Hammond M; Solomon D; Bradford K; Russell T; Sizer Y; Nichols SC; Roberts DL; Shelton C; Greguletz R; Mitchell JP
    AAPS PharmSciTech; 2014 Oct; 15(5):1126-37. PubMed ID: 24871551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided design of dry powder inhalers using computational fluid dynamics to assess performance.
    Suwandecha T; Wongpoowarak W; Srichana T
    Pharm Dev Technol; 2016; 21(1):54-60. PubMed ID: 25265389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a New Inhaler for High-Efficiency Dispersion of Spray-Dried Powders Using Computational Fluid Dynamics (CFD) Modeling.
    Longest W; Farkas D
    AAPS J; 2019 Feb; 21(2):25. PubMed ID: 30734133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Pierce and inhale" design in capsule based dry powder inhalers: Effect of capsule piercing and motion on aerodynamic performance of drugs.
    Martinelli F; Balducci AG; Rossi A; Sonvico F; Colombo P; Buttini F
    Int J Pharm; 2015 Jun; 487(1-2):197-204. PubMed ID: 25843756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancement of a Positive-Pressure Dry Powder Inhaler for Children: Use of a Vertical Aerosolization Chamber and Three-Dimensional Rod Array Interface.
    Farkas D; Bonasera S; Bass K; Hindle M; Longest PW
    Pharm Res; 2020 Aug; 37(9):177. PubMed ID: 32862295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFD-DEM investigation of the effects of aperture size for a capsule-based dry powder inhaler.
    Zhu Q; Kakhi M; Jayasundara C; Walenga R; Behara SRB; Chan HK; Yang R
    Int J Pharm; 2023 Nov; 647():123556. PubMed ID: 37890648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery characteristics and patients' handling of two single-dose dry-powder inhalers used in COPD.
    Chapman KR; Fogarty CM; Peckitt C; Lassen C; Jadayel D; Dederichs J; Dalvi M; Kramer B
    Int J Chron Obstruct Pulmon Dis; 2011; 6():353-63. PubMed ID: 21760722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler.
    Bass K; Farkas D; Longest W
    AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capsule-Based dry powder inhaler evaluation using CFD-DEM simulations and next generation impactor data.
    Almeida LC; Bharadwaj R; Eliahu A; Wassgren CR; Nagapudi K; Muliadi AR
    Eur J Pharm Sci; 2022 Aug; 175():106226. PubMed ID: 35643378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the mouthpiece and chamber of Turbuhaler® on the aerosolization of API-only powder formulations.
    Zhu Q; Gou D; Chan HK; Kourmatzis A; Yang R
    Int J Pharm; 2023 Apr; 637():122871. PubMed ID: 36948474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of Computational Fluid Dynamics (CFD) Dispersion Parameters in the Development of a New DPI Actuated with Low Air Volumes.
    Longest W; Farkas D; Bass K; Hindle M
    Pharm Res; 2019 May; 36(8):110. PubMed ID: 31139939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial Development of an Air-Jet Dry Powder Inhaler for Rapid Delivery of Pharmaceutical Aerosols to Infants.
    Howe C; Hindle M; Bonasera S; Rani V; Longest PW
    J Aerosol Med Pulm Drug Deliv; 2021 Feb; 34(1):57-70. PubMed ID: 32758026
    [No Abstract]   [Full Text] [Related]  

  • 17. Evaluation and modification of commercial dry powder inhalers for the aerosolization of a submicrometer excipient enhanced growth (EEG) formulation.
    Son YJ; Longest PW; Tian G; Hindle M
    Eur J Pharm Sci; 2013 Jun; 49(3):390-9. PubMed ID: 23608613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating inter-patient variability of dispersion in dry powder inhalers using CFD-DEM simulations.
    Benque B; Khinast JG
    Eur J Pharm Sci; 2021 Jan; 156():105574. PubMed ID: 32980431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and comparison of new high-efficiency dry powder inhalers for carrier-free formulations.
    Behara SR; Longest PW; Farkas DR; Hindle M
    J Pharm Sci; 2014 Feb; 103(2):465-77. PubMed ID: 24307605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of grid design on the performance of 3D-printed dry powder inhalers.
    Ye Y; Ma Y; Fan Z; Zhu J
    Int J Pharm; 2022 Nov; 627():122230. PubMed ID: 36162608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.