These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22723022)

  • 21. Investigation on the influence of design features on the performance of dry powder inhalers: Spiral channel, mouthpiece dimension, and gas inlet.
    Ye Y; Fan Z; Ma Y; Zhu J
    Int J Pharm; 2023 Jul; 642():123116. PubMed ID: 37302669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding the Different Effects of Inhaler Design on the Aerosol Performance of Drug-Only and Carrier-Based DPI Formulations. Part 1: Grid Structure.
    Leung CMS; Tong Z; Zhou QT; Chan JGY; Tang P; Sun S; Yang R; Chan HK
    AAPS J; 2016 Sep; 18(5):1159-1167. PubMed ID: 27161214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Importance of powder residence time for the aerosol delivery performance of a commercial dry powder inhaler Aerolizer(®).
    Jiang L; Tang Y; Zhang H; Lu X; Chen X; Zhu J
    J Aerosol Med Pulm Drug Deliv; 2012 Oct; 25(5):265-79. PubMed ID: 22280548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of device design on the aerosolization of a carrier-based dry powder inhaler--a case study on Aerolizer(®) Foradile (®).
    Zhou QT; Tong Z; Tang P; Citterio M; Yang R; Chan HK
    AAPS J; 2013 Apr; 15(2):511-22. PubMed ID: 23371759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of inner physical properties on powder adhesion in inhalation capsules in case of a high resistance device.
    Otake H; Minami M; Yamaguchi M; Akiyama S; Inaba K; Nagai N
    Exp Ther Med; 2021 Dec; 22(6):1353. PubMed ID: 34659499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dry Powder Inhalers Based on Chitosan-Mannitol Binary Carriers: Effect of the Powder Properties on the Aerosolization Performance.
    Zhao Z; Wang G; Huang Z; Huang Y; Chen H; Pan X; Zhang X
    AAPS PharmSciTech; 2022 Jun; 23(5):164. PubMed ID: 35697949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational investigation of particle penetration and deposition pattern in a realistic respiratory tract model from different types of dry powder inhalers.
    Kim YH; Li DD; Park S; Yi DS; Yeoh GH; Abbas A
    Int J Pharm; 2022 Jan; 612():121293. PubMed ID: 34808267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carrier particle emission and dispersion in transient CFD-DEM simulations of a capsule-based DPI.
    Benque B; Khinast JG
    Eur J Pharm Sci; 2022 Jan; 168():106073. PubMed ID: 34774996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of loaded carrier mass and formulation mass on aerosolization efficiency in dry powder inhaler devices.
    Ooi J; Gill C; Young PM; Traini D
    Curr Drug Deliv; 2015; 12(1):40-6. PubMed ID: 25146438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of dose loading conditions and device geometry on the transport and aerosolization in dry powder inhalers: A simulation study.
    Sulaiman M; Liu X; Sundaresan S
    Int J Pharm; 2021 Dec; 610():121219. PubMed ID: 34699949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the Use of Computational Fluid Dynamics (CFD) Modelling to Design Improved Dry Powder Inhalers.
    Fletcher DF; Chaugule V; Gomes Dos Reis L; Young PM; Traini D; Soria J
    Pharm Res; 2021 Feb; 38(2):277-288. PubMed ID: 33575958
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a high efficiency dry powder inhaler: effects of capsule chamber design and inhaler surface modifications.
    Behara SR; Farkas DR; Hindle M; Longest PW
    Pharm Res; 2014 Feb; 31(2):360-72. PubMed ID: 23949304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding the motion of hard-shell capsules in dry powder inhalers.
    Benque B; Khinast JG
    Int J Pharm; 2019 Aug; 567():118481. PubMed ID: 31260784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-vitro and particle image velocimetry studies of dry powder inhalers.
    Dos Reis LG; Chaugule V; Fletcher DF; Young PM; Traini D; Soria J
    Int J Pharm; 2021 Jan; 592():119966. PubMed ID: 33161040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer™ disposable high-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Woolhouse R; Wynn E
    J Pharm Pharmacol; 2012 Sep; 64(9):1316-25. PubMed ID: 22881443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical Study on Particle Adhesion in Dry Powder Inhaler Device.
    Mitani R; Ohsaki S; Nakamura H; Watano S
    Chem Pharm Bull (Tokyo); 2020; 68(8):726-736. PubMed ID: 32741913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of an inline dry powder inhaler to deliver high dose pharmaceutical aerosols during low flow nasal cannula therapy.
    Farkas D; Hindle M; Longest PW
    Int J Pharm; 2018 Jul; 546(1-2):1-9. PubMed ID: 29733972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dry powder inhalers: the influence of device resistance and powder formulation on drug and lactose deposition in vitro.
    Srichana T; Martin GP; Marriott C
    Eur J Pharm Sci; 1998 Dec; 7(1):73-80. PubMed ID: 9845780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applications of capsule dosing techniques for use in dry powder inhalers.
    Edwards D
    Ther Deliv; 2010 Jul; 1(1):195-201. PubMed ID: 22816126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.