These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Gene expression profile in newborn rat lungs after two days of recovery of mechanical ventilation. Dénervaud V; Gremlich S; Trummer-Menzi E; Schittny JC; Roth-Kleiner M Pediatr Res; 2015 Dec; 78(6):641-9. PubMed ID: 26353077 [TBL] [Abstract][Full Text] [Related]
3. Insights into the expression profiles and functions of circRNAs in a newborn hyperoxia-induced rat bronchopulmonary dysplasia model. Cheng H; Wu B; Wang L; Hu T; Deng Z; Li D J Gene Med; 2020 May; 22(5):e3163. PubMed ID: 31961470 [TBL] [Abstract][Full Text] [Related]
4. MicroRNA dysregulation in the heart and lung of infants with bronchopulmonary dysplasia. Koussa S; Dombkowski A; Cukovic D; Poulik J; Sood BG Pediatr Pulmonol; 2023 Jul; 58(7):1982-1992. PubMed ID: 37098830 [TBL] [Abstract][Full Text] [Related]
5. Differential expression of long non-coding RNAs in hyperoxia-induced bronchopulmonary dysplasia. Bao TP; Wu R; Cheng HP; Cui XW; Tian ZF Cell Biochem Funct; 2016 Jul; 34(5):299-309. PubMed ID: 27137150 [TBL] [Abstract][Full Text] [Related]
6. Exome Sequencing of Neonatal Blood Spots and the Identification of Genes Implicated in Bronchopulmonary Dysplasia. Li J; Yu KH; Oehlert J; Jeliffe-Pawlowski LL; Gould JB; Stevenson DK; Snyder M; Shaw GM; O'Brodovich HM Am J Respir Crit Care Med; 2015 Sep; 192(5):589-96. PubMed ID: 26030808 [TBL] [Abstract][Full Text] [Related]
7. The genome-wide transcriptional response to neonatal hyperoxia identifies Ahr as a key regulator. Bhattacharya S; Zhou Z; Yee M; Chu CY; Lopez AM; Lunger VA; Solleti SK; Resseguie E; Buczynski B; Mariani TJ; O'Reilly MA Am J Physiol Lung Cell Mol Physiol; 2014 Oct; 307(7):L516-23. PubMed ID: 25150061 [TBL] [Abstract][Full Text] [Related]
8. Lysyl oxidase activity is dysregulated during impaired alveolarization of mouse and human lungs. Kumarasamy A; Schmitt I; Nave AH; Reiss I; van der Horst I; Dony E; Roberts JD; de Krijger RR; Tibboel D; Seeger W; Schermuly RT; Eickelberg O; Morty RE Am J Respir Crit Care Med; 2009 Dec; 180(12):1239-52. PubMed ID: 19797161 [TBL] [Abstract][Full Text] [Related]
9. Pulmonary vascular disease is evident in gene regulation of experimental bronchopulmonary dysplasia. Revhaug C; Zasada M; Rognlien AGW; Günther CC; Grabowska A; Książek T; Madetko-Talowska A; Szewczyk K; Bik-Multanowski M; Kwinta P; Pietrzyk JJ; Baumbusch LO; Saugstad OD J Matern Fetal Neonatal Med; 2020 Jun; 33(12):2122-2130. PubMed ID: 30428746 [No Abstract] [Full Text] [Related]
10. Long non-coding RNA MALAT1 protects preterm infants with bronchopulmonary dysplasia by inhibiting cell apoptosis. Cai C; Qiu J; Qiu G; Chen Y; Song Z; Li J; Gong X BMC Pulm Med; 2017 Dec; 17(1):199. PubMed ID: 29237426 [TBL] [Abstract][Full Text] [Related]
11. Pathogenesis of bronchopulmonary dysplasia: the role of interleukin 1beta in the regulation of inflammation-mediated pulmonary retinoic acid pathways in transgenic mice. Bry K; Lappalainen U Semin Perinatol; 2006 Jun; 30(3):121-8. PubMed ID: 16813970 [TBL] [Abstract][Full Text] [Related]
12. Immune System Regulation Affected by a Murine Experimental Model of Bronchopulmonary Dysplasia: Genomic and Epigenetic Findings. Revhaug C; Bik-Multanowski M; Zasada M; Rognlien AGW; Günther CC; Ksiązek T; Madetko-Talowska A; Szewczyk K; Grabowska A; Kwinta P; Pietrzyk JJ; Baumbusch LO; Saugstad OD Neonatology; 2019; 116(3):269-277. PubMed ID: 31454811 [TBL] [Abstract][Full Text] [Related]
13. CD74, a novel predictor for bronchopulmonary dysplasia in preterm infants. Gao J; Wu M; Wang F; Jiang L; Tian R; Zhu X; He S Medicine (Baltimore); 2020 Nov; 99(48):e23477. PubMed ID: 33235138 [TBL] [Abstract][Full Text] [Related]
14. Lymphocyte-Specific Biomarkers Associated With Preterm Birth and Bronchopulmonary Dysplasia. Bhattacharya S; Mereness JA; Baran AM; Misra RS; Peterson DR; Ryan RM; Reynolds AM; Pryhuber GS; Mariani TJ Front Immunol; 2020; 11():563473. PubMed ID: 33552042 [TBL] [Abstract][Full Text] [Related]
15. Gene Expression Profiling Identifies Cell Proliferation and Inflammation as the Predominant Pathways Regulated by Aryl Hydrocarbon Receptor in Primary Human Fetal Lung Cells Exposed to Hyperoxia. Shivanna B; Maity S; Zhang S; Patel A; Jiang W; Wang L; Welty SE; Belmont J; Coarfa C; Moorthy B Toxicol Sci; 2016 Jul; 152(1):155-68. PubMed ID: 27103661 [TBL] [Abstract][Full Text] [Related]
17. Astragalus polysaccharides exert protective effects in newborn rats with bronchopulmonary dysplasia by upregulating the expression of EGFL7 in lung tissue. Wang XH; Huang WM Int J Mol Med; 2014 Dec; 34(6):1529-36. PubMed ID: 25270395 [TBL] [Abstract][Full Text] [Related]
18. Impaired Autophagic Activity Contributes to the Pathogenesis of Bronchopulmonary Dysplasia. Evidence from Murine and Baboon Models. Zhang L; Soni S; Hekimoglu E; Berkelhamer S; Çataltepe S Am J Respir Cell Mol Biol; 2020 Sep; 63(3):338-348. PubMed ID: 32374619 [TBL] [Abstract][Full Text] [Related]
20. Bioinformatic analysis reveals the relationship between macrophage infiltration and Cybb downregulation in hyperoxia-induced bronchopulmonary dysplasia. He Y; Li D; Zhang M; Li F Sci Rep; 2024 Aug; 14(1):20089. PubMed ID: 39209930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]