BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 22723425)

  • 1. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae.
    Dagdas YF; Yoshino K; Dagdas G; Ryder LS; Bielska E; Steinberg G; Talbot NJ
    Science; 2012 Jun; 336(6088):1590-5. PubMed ID: 22723425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turgor-dependent and coronin-mediated F-actin dynamics drive septin disc-to-ring remodeling in the blast fungus
    Dulal N; Rogers AM; Proko R; Bieger BD; Liyanage R; Krishnamurthi VR; Wang Y; Egan MJ
    J Cell Sci; 2021 Feb; 134(5):. PubMed ID: 33414165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Septin-Dependent Assembly of the Exocyst Is Essential for Plant Infection by Magnaporthe oryzae.
    Gupta YK; Dagdas YF; Martinez-Rocha AL; Kershaw MJ; Littlejohn GR; Ryder LS; Sklenar J; Menke F; Talbot NJ
    Plant Cell; 2015 Nov; 27(11):3277-89. PubMed ID: 26566920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Cdc42 ortholog is required for penetration and virulence of Magnaporthe grisea.
    Zheng W; Zhao Z; Chen J; Liu W; Ke H; Zhou J; Lu G; Darvill AG; Albersheim P; Wu S; Wang Z
    Fungal Genet Biol; 2009; 46(6-7):450-60. PubMed ID: 19298860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae.
    Osés-Ruiz M; Sakulkoo W; Littlejohn GR; Martin-Urdiroz M; Talbot NJ
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):E237-E244. PubMed ID: 28028232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus.
    Park G; Bruno KS; Staiger CJ; Talbot NJ; Xu JR
    Mol Microbiol; 2004 Sep; 53(6):1695-707. PubMed ID: 15341648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAF104, a synthetic peptide to control rice blast disease by blocking appressorium formation in Magnaporthe oryzae.
    Rebollar A; López-García B
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1407-16. PubMed ID: 23902261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical model for appressorial design in Magnaporthe grisea.
    Tongen A; Goriely A; Tabor M
    J Theor Biol; 2006 May; 240(1):1-8. PubMed ID: 16207493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi.
    Sesma A; Osbourn AE
    Nature; 2004 Sep; 431(7008):582-6. PubMed ID: 15457264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPM1 encoding a vacuole-localized protease is required for infection-related autophagy of the rice blast fungus Magnaporthe oryzae.
    Saitoh H; Fujisawa S; Ito A; Mitsuoka C; Berberich T; Tosa Y; Asakura M; Takano Y; Terauchi R
    FEMS Microbiol Lett; 2009 Nov; 300(1):115-21. PubMed ID: 19765082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus.
    Ryder LS; Dagdas YF; Mentlak TA; Kershaw MJ; Thornton CR; Schuster M; Chen J; Wang Z; Talbot NJ
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):3179-84. PubMed ID: 23382235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of MoLDB1 required for vegetative growth, infection-related morphogenesis, and pathogenicity in the rice blast fungus Magnaporthe oryzae.
    Li Y; Liang S; Yan X; Wang H; Li D; Soanes DM; Talbot NJ; Wang Z; Wang Z
    Mol Plant Microbe Interact; 2010 Oct; 23(10):1260-74. PubMed ID: 20831406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the cell and developmental biology of plant infection by the rice blast fungus Magnaporthe oryzae.
    Eseola AB; Ryder LS; Osés-Ruiz M; Findlay K; Yan X; Cruz-Mireles N; Molinari C; Garduño-Rosales M; Talbot NJ
    Fungal Genet Biol; 2021 Sep; 154():103562. PubMed ID: 33882359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoRic8 Is a novel component of G-protein signaling during plant infection by the rice blast fungus Magnaporthe oryzae.
    Li Y; Yan X; Wang H; Liang S; Ma WB; Fang MY; Talbot NJ; Wang ZY
    Mol Plant Microbe Interact; 2010 Mar; 23(3):317-31. PubMed ID: 20121453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic assembly of a higher-order septin structure during appressorium morphogenesis by the rice blast fungus.
    Dulal N; Rogers A; Wang Y; Egan M
    Fungal Genet Biol; 2020 Jul; 140():103385. PubMed ID: 32305452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MoSNF1 regulates sporulation and pathogenicity in the rice blast fungus Magnaporthe oryzae.
    Yi M; Park JH; Ahn JH; Lee YH
    Fungal Genet Biol; 2008 Aug; 45(8):1172-81. PubMed ID: 18595748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of plant-generated reactive oxygen species is required for successful infection by the rice blast fungus.
    Huang K; Czymmek KJ; Caplan JL; Sweigard JA; Donofrio NM
    Virulence; 2011; 2(6):559-62. PubMed ID: 21971181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagic fungal cell death is necessary for infection by the rice blast fungus.
    Veneault-Fourrey C; Barooah M; Egan M; Wakley G; Talbot NJ
    Science; 2006 Apr; 312(5773):580-3. PubMed ID: 16645096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Biology of Invasive Growth by the Rice Blast Fungus Magnaporthe oryzae.
    Cruz-Mireles N; Eisermann I; Garduño-Rosales M; Molinari C; Ryder LS; Tang B; Yan X; Talbot NJ
    Methods Mol Biol; 2021; 2356():19-40. PubMed ID: 34236674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection.
    Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ
    Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.