BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 22723425)

  • 21. The MoLfa1 Protein Regulates Fungal Development and Septin Ring Formation in
    Wu JQ; Zhu XM; Bao JD; Wang JY; Yu XP; Lin FC; Li L
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation.
    Kamakura T; Yamaguchi S; Saitoh K; Teraoka T; Yamaguchi I
    Mol Plant Microbe Interact; 2002 May; 15(5):437-44. PubMed ID: 12036274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea.
    Bhambra GK; Wang ZY; Soanes DM; Wakley GE; Talbot NJ
    Mol Microbiol; 2006 Jul; 61(1):46-60. PubMed ID: 16824094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner.
    Lopez-Moya F; Martin-Urdiroz M; Oses-Ruiz M; Were VM; Fricker MD; Littlejohn G; Lopez-Llorca LV; Talbot NJ
    New Phytol; 2021 May; 230(4):1578-1593. PubMed ID: 33570748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of glycerol in the pathogenic lifestyle of the rice blast fungus Magnaporthe oryzae.
    Foster AJ; Ryder LS; Kershaw MJ; Talbot NJ
    Environ Microbiol; 2017 Mar; 19(3):1008-1016. PubMed ID: 28165657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conidial Morphogenesis and Septin-Mediated Plant Infection Require Smo1, a Ras GTPase-Activating Protein in
    Kershaw MJ; Basiewicz M; Soanes DM; Yan X; Ryder LS; Csukai M; Oses-Ruiz M; Valent B; Talbot NJ
    Genetics; 2019 Jan; 211(1):151-167. PubMed ID: 30446520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in rice blast effector research.
    Valent B; Khang CH
    Curr Opin Plant Biol; 2010 Aug; 13(4):434-41. PubMed ID: 20627803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Infection-associated nuclear degeneration in the rice blast fungus Magnaporthe oryzae requires non-selective macro-autophagy.
    He M; Kershaw MJ; Soanes DM; Xia Y; Talbot NJ
    PLoS One; 2012; 7(3):e33270. PubMed ID: 22448240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea.
    Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC
    Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of septins in microbial infection.
    Van Ngo H; Mostowy S
    J Cell Sci; 2019 Apr; 132(9):. PubMed ID: 31040222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant disease: underground life for rice foe.
    Valent B
    Nature; 2004 Sep; 431(7008):516-7. PubMed ID: 15457240
    [No Abstract]   [Full Text] [Related]  

  • 33. The cell cycle gene MoCDC15 regulates hyphal growth, asexual development and plant infection in the rice blast pathogen Magnaporthe oryzae.
    Goh J; Kim KS; Park J; Jeon J; Park SY; Lee YH
    Fungal Genet Biol; 2011 Aug; 48(8):784-92. PubMed ID: 21600998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice.
    Kishimoto K; Kouzai Y; Kaku H; Shibuya N; Minami E; Nishizawa Y
    Plant J; 2010 Oct; 64(2):343-54. PubMed ID: 21070413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MoSep3 and MoExo70 are needed for MoCK2 ring assembly essential for appressorium function in the rice blast fungus, Magnaporthe oryzae.
    Zhang L; Cai Y; Li Y; Zhang T; Wang B; Lu G; Zhang D; Olsson S; Wang Z
    Mol Plant Pathol; 2021 Sep; 22(9):1159-1164. PubMed ID: 34117700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A sensor kinase controls turgor-driven plant infection by the rice blast fungus.
    Ryder LS; Dagdas YF; Kershaw MJ; Venkataraman C; Madzvamuse A; Yan X; Cruz-Mireles N; Soanes DM; Oses-Ruiz M; Styles V; Sklenar J; Menke FLH; Talbot NJ
    Nature; 2019 Oct; 574(7778):423-427. PubMed ID: 31597961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Site-directed mutagenesis of the cytochrome b gene and development of diagnostic methods for identifying QoI resistance of rice blast fungus.
    Wei CZ; Katoh H; Nishimura K; Ishii H
    Pest Manag Sci; 2009 Dec; 65(12):1344-51. PubMed ID: 19662660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization.
    Kim S; Ahn IP; Rho HS; Lee YH
    Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Secretome analysis of Magnaporthe oryzae using in vitro systems.
    Jung YH; Jeong SH; Kim SH; Singh R; Lee JE; Cho YS; Agrawal GK; Rakwal R; Jwa NS
    Proteomics; 2012 Mar; 12(6):878-900. PubMed ID: 22539438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice.
    Moreno AB; Peñas G; Rufat M; Bravo JM; Estopà M; Messeguer J; San Segundo B
    Mol Plant Microbe Interact; 2005 Sep; 18(9):960-72. PubMed ID: 16167766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.