BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 22723494)

  • 1. Cytoplasmic RNA-binding proteins and the control of complex brain function.
    Darnell JC; Richter JD
    Cold Spring Harb Perspect Biol; 2012 Aug; 4(8):a012344. PubMed ID: 22723494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules.
    Ohashi R; Shiina N
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 31978946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of mRNA translation in cultured hippocampal neurons.
    Huang YS; Richter JD
    Methods Enzymol; 2007; 431():143-62. PubMed ID: 17923234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II.
    Atkins CM; Nozaki N; Shigeri Y; Soderling TR
    J Neurosci; 2004 Jun; 24(22):5193-201. PubMed ID: 15175389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational control of synaptic plasticity.
    Richter JD
    Biochem Soc Trans; 2010 Dec; 38(6):1527-30. PubMed ID: 21118120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational control by CPEB: a means to the end.
    Mendez R; Richter JD
    Nat Rev Mol Cell Biol; 2001 Jul; 2(7):521-9. PubMed ID: 11433366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus.
    Zearfoss NR; Alarcon JM; Trifilieff P; Kandel E; Richter JD
    J Neurosci; 2008 Aug; 28(34):8502-9. PubMed ID: 18716208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains.
    Sudhakaran IP; Ramaswami M
    RNA Biol; 2017 May; 14(5):568-586. PubMed ID: 27726526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pathophysiology of fragile X (and what it teaches us about synapses).
    Bhakar AL; Dölen G; Bear MF
    Annu Rev Neurosci; 2012; 35():417-43. PubMed ID: 22483044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning.
    Daroles L; Gribaudo S; Doulazmi M; Scotto-Lomassese S; Dubacq C; Mandairon N; Greer CA; Didier A; Trembleau A; Caillé I
    Biol Psychiatry; 2016 Jul; 80(2):149-159. PubMed ID: 26372002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses.
    Wu L; Wells D; Tay J; Mendis D; Abbott MA; Barnitt A; Quinlan E; Heynen A; Fallon JR; Richter JD
    Neuron; 1998 Nov; 21(5):1129-39. PubMed ID: 9856468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic plasticity and translation initiation.
    Klann E; Antion MD; Banko JL; Hou L
    Learn Mem; 2004; 11(4):365-72. PubMed ID: 15254214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RNA binding protein fragile X mental retardation protein promotes myelin sheath growth.
    Doll CA; Yergert KM; Appel BH
    Glia; 2020 Mar; 68(3):495-508. PubMed ID: 31626382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking the Fragile X Mental Retardation Protein in a Highly Ordered Neuronal RiboNucleoParticles Population: A Link between Stalled Polyribosomes and RNA Granules.
    El Fatimy R; Davidovic L; Tremblay S; Jaglin X; Dury A; Robert C; De Koninck P; Khandjian EW
    PLoS Genet; 2016 Jul; 12(7):e1006192. PubMed ID: 27462983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of GpI mGluR-Dependent Cav2.3 Translation in a Mouse Model of Fragile X Syndrome.
    Gray EE; Murphy JG; Liu Y; Trang I; Tabor GT; Lin L; Hoffman DA
    J Neurosci; 2019 Sep; 39(38):7453-7464. PubMed ID: 31350260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mRNPs, polysomes or granules: FMRP in neuronal protein synthesis.
    Zalfa F; Achsel T; Bagni C
    Curr Opin Neurobiol; 2006 Jun; 16(3):265-9. PubMed ID: 16707258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into fragile X syndrome: from molecules to neurobehaviors.
    Jin P; Warren ST
    Trends Biochem Sci; 2003 Mar; 28(3):152-8. PubMed ID: 12633995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex.
    Udagawa T; Swanger SA; Takeuchi K; Kim JH; Nalavadi V; Shin J; Lorenz LJ; Zukin RS; Bassell GJ; Richter JD
    Mol Cell; 2012 Jul; 47(2):253-66. PubMed ID: 22727665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory.
    Huang YS; Mendez R; Fernandez M; Richter JD
    Mol Psychiatry; 2023 Jul; 28(7):2728-2736. PubMed ID: 37131078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered synaptic plasticity in a mouse model of fragile X mental retardation.
    Huber KM; Gallagher SM; Warren ST; Bear MF
    Proc Natl Acad Sci U S A; 2002 May; 99(11):7746-50. PubMed ID: 12032354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.