These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 22723494)

  • 41. Fragile X mental retardation protein levels increase following complex environment exposure in rat brain regions undergoing active synaptogenesis.
    Irwin SA; Christmon CA; Grossman AW; Galvez R; Kim SH; DeGrush BJ; Weiler IJ; Greenough WT
    Neurobiol Learn Mem; 2005 May; 83(3):180-7. PubMed ID: 15820853
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A combinatorial code for CPE-mediated translational control.
    Piqué M; López JM; Foissac S; Guigó R; Méndez R
    Cell; 2008 Feb; 132(3):434-48. PubMed ID: 18267074
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A neuronal isoform of the aplysia CPEB has prion-like properties.
    Si K; Lindquist S; Kandel ER
    Cell; 2003 Dec; 115(7):879-91. PubMed ID: 14697205
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinase pathway inhibition restores PSD95 induction in neurons lacking fragile X mental retardation protein.
    Yang Y; Geng Y; Jiang D; Ning L; Kim HJ; Jeon NL; Lau A; Chen L; Lin MZ
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):12007-12012. PubMed ID: 31118285
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The cytoplasmic polyadenylation element binding protein and polyadenylation of messenger RNA in Aplysia neurons.
    Liu J; Schwartz JH
    Brain Res; 2003 Jan; 959(1):68-76. PubMed ID: 12480159
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of cytoplasmic polyadenylation element binding 2 protein expression and its RNA binding activity.
    Turimella SL; Bedner P; Skubal M; Vangoor VR; Kaczmarczyk L; Karl K; Zoidl G; Gieselmann V; Seifert G; Steinhäuser C; Kandel E; Theis M
    Hippocampus; 2015 May; 25(5):630-42. PubMed ID: 25483308
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins.
    Afroz T; Skrisovska L; Belloc E; Guillén-Boixet J; Méndez R; Allain FH
    Genes Dev; 2014 Jul; 28(13):1498-514. PubMed ID: 24990967
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation.
    Burns DM; D'Ambrogio A; Nottrott S; Richter JD
    Nature; 2011 May; 473(7345):105-8. PubMed ID: 21478871
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fragile X mental retardation protein in plasticity and disease.
    Todd PK; Malter JS
    J Neurosci Res; 2002 Dec; 70(5):623-30. PubMed ID: 12424729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function.
    Bassell GJ; Warren ST
    Neuron; 2008 Oct; 60(2):201-14. PubMed ID: 18957214
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid.
    Soden ME; Chen L
    J Neurosci; 2010 Dec; 30(50):16910-21. PubMed ID: 21159962
    [TBL] [Abstract][Full Text] [Related]  

  • 52. N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses.
    Huang YS; Jung MY; Sarkissian M; Richter JD
    EMBO J; 2002 May; 21(9):2139-48. PubMed ID: 11980711
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression of fragile X mental retardation-1 gene with nuclear export signal mutation changes the expression profiling of mouse cerebella immortal neuronal cell.
    Hu L; Chen Y; Evers S; Shen Y
    Proteomics; 2005 Oct; 5(15):3979-90. PubMed ID: 16130171
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The state of synapses in fragile X syndrome.
    Pfeiffer BE; Huber KM
    Neuroscientist; 2009 Oct; 15(5):549-67. PubMed ID: 19325170
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cytoplasmic polyadenylation element binding proteins in development, health, and disease.
    Ivshina M; Lasko P; Richter JD
    Annu Rev Cell Dev Biol; 2014; 30():393-415. PubMed ID: 25068488
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proteostasis and RNA Binding Proteins in Synaptic Plasticity and in the Pathogenesis of Neuropsychiatric Disorders.
    Klein ME; Monday H; Jordan BA
    Neural Plast; 2016; 2016():3857934. PubMed ID: 26904297
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fragile X mental retardation protein induces synapse loss through acute postsynaptic translational regulation.
    Pfeiffer BE; Huber KM
    J Neurosci; 2007 Mar; 27(12):3120-30. PubMed ID: 17376973
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Post-translational modifications of the Fragile X Mental Retardation Protein in neuronal function and dysfunction.
    Prieto M; Folci A; Martin S
    Mol Psychiatry; 2020 Aug; 25(8):1688-1703. PubMed ID: 31822816
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence that fragile X mental retardation protein is a negative regulator of translation.
    Laggerbauer B; Ostareck D; Keidel EM; Ostareck-Lederer A; Fischer U
    Hum Mol Genet; 2001 Feb; 10(4):329-38. PubMed ID: 11157796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Translational regulation of the human achaete-scute homologue-1 by fragile X mental retardation protein.
    Fähling M; Mrowka R; Steege A; Kirschner KM; Benko E; Förstera B; Persson PB; Thiele BJ; Meier JC; Scholz H
    J Biol Chem; 2009 Feb; 284(7):4255-66. PubMed ID: 19097999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.