These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 22723679)

  • 1. In vivo dual intra- and extracellular recordings suggest bidirectional coupling between CA1 pyramidal neurons.
    Chorev E; Brecht M
    J Neurophysiol; 2012 Sep; 108(6):1584-93. PubMed ID: 22723679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of spikelets on hippocampal CA1 pyramidal cell activity during spatial exploration.
    Epsztein J; Lee AK; Chorev E; Brecht M
    Science; 2010 Jan; 327(5964):474-7. PubMed ID: 20093475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular waveforms reveal an axonal origin of spikelets in pyramidal neurons.
    Michalikova M; Remme MWH; Kempter R
    J Neurophysiol; 2018 Oct; 120(4):1484-1495. PubMed ID: 29947587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of electrical coupling between pyramidal cells.
    Vigmond EJ; Perez Velazquez JL; Valiante TA; Bardakjian BL; Carlen PL
    J Neurophysiol; 1997 Dec; 78(6):3107-16. PubMed ID: 9405530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the origin of the extracellular action potential waveform: A modeling study.
    Gold C; Henze DA; Koch C; Buzsáki G
    J Neurophysiol; 2006 May; 95(5):3113-28. PubMed ID: 16467426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of spikelet activity in the primary visual cortex.
    Scholl B; Andoni S; Priebe NJ
    J Physiol; 2015 Nov; 593(22):4979-94. PubMed ID: 26332436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A possible role of ectopic action potentials in the in vitro hippocampal sharp wave-ripple complexes.
    Papatheodoropoulos C
    Neuroscience; 2008 Dec; 157(3):495-501. PubMed ID: 18938226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced intrinsic excitability and EPSP-spike coupling accompany enriched environment-induced facilitation of LTP in hippocampal CA1 pyramidal neurons.
    Malik R; Chattarji S
    J Neurophysiol; 2012 Mar; 107(5):1366-78. PubMed ID: 22157122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spikelets in pyramidal neurons: generating mechanisms, distinguishing properties, and functional implications.
    Michalikova M; Remme MWH; Schmitz D; Schreiber S; Kempter R
    Rev Neurosci; 2019 Dec; 31(1):101-119. PubMed ID: 31437125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.
    Gu N; Hu H; Vervaeke K; Storm JF
    J Neurophysiol; 2008 Nov; 100(5):2589-604. PubMed ID: 18684909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo electrophysiological analysis of lucifer yellow-coupled hippocampal pyramids.
    Núñez A; García-Austt E; Buño W
    Exp Neurol; 1990 Apr; 108(1):76-82. PubMed ID: 2318289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling potentials in CA1 neurons during calcium-free-induced field burst activity.
    Valiante TA; Perez Velazquez JL; Jahromi SS; Carlen PL
    J Neurosci; 1995 Oct; 15(10):6946-56. PubMed ID: 7472451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular DC electric fields induce nonuniform membrane polarization in rat hippocampal CA1 pyramidal neurons.
    Akiyama H; Shimizu Y; Miyakawa H; Inoue M
    Brain Res; 2011 Apr; 1383():22-35. PubMed ID: 21295559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic and synaptic mechanisms determining the timing of neuron population activity during hippocampal theta oscillation.
    Orbán G; Kiss T; Erdi P
    J Neurophysiol; 2006 Dec; 96(6):2889-904. PubMed ID: 16899632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular features predicted by extracellular recordings in the hippocampus in vivo.
    Henze DA; Borhegyi Z; Csicsvari J; Mamiya A; Harris KD; Buzsáki G
    J Neurophysiol; 2000 Jul; 84(1):390-400. PubMed ID: 10899213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human cerebrospinal fluid increases the excitability of pyramidal neurons in the in vitro brain slice.
    Bjorefeldt A; Andreasson U; Daborg J; Riebe I; Wasling P; Zetterberg H; Hanse E
    J Physiol; 2015 Jan; 593(1):231-43. PubMed ID: 25556798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the hippocampus on interneurons of the rat prefrontal cortex.
    Tierney PL; Dégenètais E; Thierry AM; Glowinski J; Gioanni Y
    Eur J Neurosci; 2004 Jul; 20(2):514-24. PubMed ID: 15233760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between membrane potential oscillations and rhythmic discharges in identified hippocampal theta-related cells.
    Bland BH; Konopacki J; Dyck RH
    J Neurophysiol; 2002 Dec; 88(6):3046-66. PubMed ID: 12466429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and electrophysiological properties of pyramidal-like neurons in the stratum oriens of Cornu ammonis 1 and Cornu ammonis 2 area of Proechimys.
    Scorza CA; Araujo BH; Leite LA; Torres LB; Otalora LF; Oliveira MS; Garrido-Sanabria ER; Cavalheiro EA
    Neuroscience; 2011 Mar; 177():252-68. PubMed ID: 21215795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization of GABAergic inputs to CA3 pyramidal cells precedes seizure-like event onset in juvenile rat hippocampal slices.
    Lasztóczi B; Nyitrai G; Héja L; Kardos J
    J Neurophysiol; 2009 Oct; 102(4):2538-53. PubMed ID: 19675286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.