These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 22723781)
1. Global climate change and its potential impact on disease transmission by salinity-tolerant mosquito vectors in coastal zones. Ramasamy R; Surendran SN Front Physiol; 2012; 3():198. PubMed ID: 22723781 [TBL] [Abstract][Full Text] [Related]
3. Salinity-tolerant larvae of mosquito vectors in the tropical coast of Jaffna, Sri Lanka and the effect of salinity on the toxicity of Bacillus thuringiensis to Aedes aegypti larvae. Jude PJ; Tharmasegaram T; Sivasubramaniyam G; Senthilnanthanan M; Kannathasan S; Raveendran S; Ramasamy R; Surendran SN Parasit Vectors; 2012 Nov; 5():269. PubMed ID: 23174003 [TBL] [Abstract][Full Text] [Related]
4. Possible impact of rising sea levels on vector-borne infectious diseases. Ramasamy R; Surendran SN BMC Infect Dis; 2011 Jan; 11():18. PubMed ID: 21241521 [TBL] [Abstract][Full Text] [Related]
6. Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases. Ramasamy R; Surendran SN; Jude PJ; Dharshini S; Vinobaba M PLoS Negl Trop Dis; 2011 Nov; 5(11):e1369. PubMed ID: 22132243 [TBL] [Abstract][Full Text] [Related]
7. Aedes larval bionomics and implications for dengue control in the paradigmatic Jaffna peninsula, northern Sri Lanka. Surendran SN; Jayadas TTP; Thiruchenthooran V; Raveendran S; Tharsan A; Santhirasegaram S; Sivabalakrishnan K; Karunakaran S; Ponnaiah B; Gomes L; Malavige GN; Ramasamy R Parasit Vectors; 2021 Mar; 14(1):162. PubMed ID: 33736702 [TBL] [Abstract][Full Text] [Related]
8. Transcriptomic, proteomic and ultrastructural studies on salinity-tolerant Aedes aegypti in the context of rising sea levels and arboviral disease epidemiology. Ramasamy R; Thiruchenthooran V; Jayadas TTP; Eswaramohan T; Santhirasegaram S; Sivabalakrishnan K; Naguleswaran A; Uzest M; Cayrol B; Voisin SN; Bulet P; Surendran SN BMC Genomics; 2021 Apr; 22(1):253. PubMed ID: 33836668 [TBL] [Abstract][Full Text] [Related]
9. Biological differences between brackish and fresh water-derived Aedes aegypti from two locations in the Jaffna peninsula of Sri Lanka and the implications for arboviral disease transmission. Ramasamy R; Jude PJ; Veluppillai T; Eswaramohan T; Surendran SN PLoS One; 2014; 9(8):e104977. PubMed ID: 25170879 [TBL] [Abstract][Full Text] [Related]
10. Variations in salinity tolerance of malaria vectors of the Anopheles subpictus complex in Sri Lanka and the implications for malaria transmission. Surendran SN; Jude PJ; Ramasamy R Parasit Vectors; 2011 Jun; 4():117. PubMed ID: 21702917 [TBL] [Abstract][Full Text] [Related]
11. Effect of water salinity on immature performance and lifespan of adult Asian tiger mosquito. Blanco-Sierra L; Savvidou EC; Mpakovasili ED; Ioannou CS; Bartumeus F; Papadopoulos NT Parasit Vectors; 2024 Jan; 17(1):24. PubMed ID: 38238765 [TBL] [Abstract][Full Text] [Related]
12. Anopheles culicifacies breeding in brackish waters in Sri Lanka and implications for malaria control. Jude PJ; Dharshini S; Vinobaba M; Surendran SN; Ramasamy R Malar J; 2010 Apr; 9():106. PubMed ID: 20409313 [TBL] [Abstract][Full Text] [Related]
13. Anopheline bionomics, insecticide resistance and transnational dispersion in the context of controlling a possible recurrence of malaria transmission in Jaffna city in northern Sri Lanka. Surendran SN; Jayadas TTP; Tharsan A; Thiruchenthooran V; Santhirasegaram S; Sivabalakrishnan K; Raveendran S; Ramasamy R Parasit Vectors; 2020 Mar; 13(1):156. PubMed ID: 32228675 [TBL] [Abstract][Full Text] [Related]
14. Anthropogenic Factors Driving Recent Range Expansion of the Malaria Vector Surendran SN; Sivabalakrishnan K; Sivasingham A; Jayadas TTP; Karvannan K; Santhirasegaram S; Gajapathy K; Senthilnanthanan M; Karunaratne SP; Ramasamy R Front Public Health; 2019; 7():53. PubMed ID: 30923705 [TBL] [Abstract][Full Text] [Related]
15. Colonization of UK coastal realignment sites by mosquitoes: implications for design, management, and public health. Medlock JM; Vaux AG J Vector Ecol; 2013 Jun; 38(1):53-62. PubMed ID: 23701607 [TBL] [Abstract][Full Text] [Related]
16. Oviposition and Development of Nwaefuna EK; Bagshaw II; Gbogbo F; Osae M Malar Res Treat; 2019; 2019():9523962. PubMed ID: 31687128 [No Abstract] [Full Text] [Related]
17. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise. Agha M; Ennen JR; Bower DS; Nowakowski AJ; Sweat SC; Todd BD Biol Rev Camb Philos Soc; 2018 Aug; 93(3):1634-1648. PubMed ID: 29575680 [TBL] [Abstract][Full Text] [Related]
18. Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China. Liu B; Gao X; Ma J; Jiao Z; Xiao J; Hayat MA; Wang H Sci Total Environ; 2019 May; 664():203-214. PubMed ID: 30743113 [TBL] [Abstract][Full Text] [Related]
19. Seasonal variations of dengue vector mosquitoes in rural settings of Thiruvarur district in Tamil Nadu, India. Shukla A; Rajalakshmi A; Subash K; Jayakumar S; Arul N; Srivastava PK; Eapen A; Krishnan J J Vector Borne Dis; 2020; 57(1):63-70. PubMed ID: 33818458 [TBL] [Abstract][Full Text] [Related]
20. Spatial modelling of the potential temperature-dependent transmission of vector-associated diseases in the face of climate change: main results and recommendations from a pilot study in Lower Saxony (Germany). Schröder W; Schmidt G Parasitol Res; 2008 Dec; 103 Suppl 1():S55-63. PubMed ID: 19030886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]