These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
395 related articles for article (PubMed ID: 22723874)
1. The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. Lulin H; Xiao Y; Pei S; Wen T; Shangqin H PLoS One; 2012; 7(6):e38653. PubMed ID: 22723874 [TBL] [Abstract][Full Text] [Related]
2. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids. Li H; Dong Y; Yang J; Liu X; Wang Y; Yao N; Guan L; Wang N; Wu J; Li X PLoS One; 2012; 7(2):e30987. PubMed ID: 22363528 [TBL] [Abstract][Full Text] [Related]
3. De Novo Sequencing and Analysis of the Safflower Transcriptome to Discover Putative Genes Associated with Safflor Yellow in Carthamus tinctorius L. Liu X; Dong Y; Yao N; Zhang Y; Wang N; Cui X; Li X; Wang Y; Wang F; Yang J; Guan L; Du L; Li H; Li X Int J Mol Sci; 2015 Oct; 16(10):25657-77. PubMed ID: 26516840 [TBL] [Abstract][Full Text] [Related]
4. Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower. Chen J; Tang X; Ren C; Wei B; Wu Y; Wu Q; Pei J BMC Genomics; 2018 Jul; 19(1):548. PubMed ID: 30041604 [TBL] [Abstract][Full Text] [Related]
5. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in flowers of safflower ( Ren C; Chen C; Dong S; Wang R; Xian B; Liu T; Xi Z; Pei J; Chen J PeerJ; 2022; 10():e13591. PubMed ID: 35762018 [TBL] [Abstract][Full Text] [Related]
6. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in safflower (Carthamus tinctorius L.) under MeJA treatment. Chen J; Wang J; Wang R; Xian B; Ren C; Liu Q; Wu Q; Pei J BMC Plant Biol; 2020 Jul; 20(1):353. PubMed ID: 32727365 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the microRNAs in safflower seed, leaf, and petal by high-throughput sequencing. Li H; Dong Y; Sun Y; Zhu E; Yang J; Liu X; Xue P; Xiao Y; Yang S; Wu J; Li X Planta; 2011 Mar; 233(3):611-9. PubMed ID: 21136073 [TBL] [Abstract][Full Text] [Related]
8. The first insight into the tissue specific taxus transcriptome via Illumina second generation sequencing. Hao da C; Ge G; Xiao P; Zhang Y; Yang L PLoS One; 2011; 6(6):e21220. PubMed ID: 21731678 [TBL] [Abstract][Full Text] [Related]
9. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation. Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic Analysis of Paeonia delavayi Wild Population Flowers to Identify Differentially Expressed Genes Involved in Purple-Red and Yellow Petal Pigmentation. Shi Q; Zhou L; Wang Y; Li K; Zheng B; Miao K PLoS One; 2015; 10(8):e0135038. PubMed ID: 26267644 [TBL] [Abstract][Full Text] [Related]
11. Temporal transcriptome profiling of developing seeds reveals candidate genes involved in oil accumulation in safflower (Carthamus tinctorius L.). Li D; Wang Q; Xu X; Yu J; Chen Z; Wei B; Wu W BMC Plant Biol; 2021 Apr; 21(1):181. PubMed ID: 33858333 [TBL] [Abstract][Full Text] [Related]
12. Integrating molecular characterization and metabolites profile revealed CtCHI1's significant role in Carthamus tinctorius L. Guo D; Gao Y; Liu F; He B; Jia X; Meng F; Zhang H; Guo M BMC Plant Biol; 2019 Aug; 19(1):376. PubMed ID: 31455221 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptome among Euscaphis konishii Hayata tissues and analysis of genes involved in flavonoid biosynthesis and accumulation. Liang W; Ni L; Carballar-Lejarazú R; Zou X; Sun W; Wu L; Yuan X; Mao Y; Huang W; Zou S BMC Genomics; 2019 Jan; 20(1):24. PubMed ID: 30626333 [TBL] [Abstract][Full Text] [Related]
14. De novo transcriptome characterization of Lilium 'Sorbonne' and key enzymes related to the flavonoid biosynthesis. Zhang MF; Jiang LM; Zhang DM; Jia GX Mol Genet Genomics; 2015 Feb; 290(1):399-412. PubMed ID: 25307066 [TBL] [Abstract][Full Text] [Related]
15. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris. Li W; Zhang L; Ding Z; Wang G; Zhang Y; Gong H; Chang T; Zhang Y BMC Plant Biol; 2017 Feb; 17(1):54. PubMed ID: 28241786 [TBL] [Abstract][Full Text] [Related]
16. De novo transcriptome sequencing of Rhododendron molle and identification of genes involved in the biosynthesis of secondary metabolites. Zhou GL; Zhu P BMC Plant Biol; 2020 Sep; 20(1):414. PubMed ID: 32887550 [TBL] [Abstract][Full Text] [Related]
17. Development of Genomic Microsatellite Markers in Carthamus tinctorius L. (Safflower) Using Next Generation Sequencing and Assessment of Their Cross-Species Transferability and Utility for Diversity Analysis. Ambreen H; Kumar S; Variath MT; Joshi G; Bali S; Agarwal M; Kumar A; Jagannath A; Goel S PLoS One; 2015; 10(8):e0135443. PubMed ID: 26287743 [TBL] [Abstract][Full Text] [Related]
18. De Novo Sequencing and Assembly Analysis of the Pseudostellaria heterophylla Transcriptome. Li J; Zhen W; Long D; Ding L; Gong A; Xiao C; Jiang W; Liu X; Zhou T; Huang L PLoS One; 2016; 11(10):e0164235. PubMed ID: 27764127 [TBL] [Abstract][Full Text] [Related]
19. Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway. Wang Y; Hua W; Wang J; Hannoufa A; Xu Z; Wang Z Mol Genet Genomics; 2013 Apr; 288(3-4):131-9. PubMed ID: 23463169 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the global transcriptome of longan (Dimocarpus longan Lour.) embryogenic callus using Illumina paired-end sequencing. Lai Z; Lin Y BMC Genomics; 2013 Aug; 14():561. PubMed ID: 23957614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]