BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22724009)

  • 21. Protein-RNA sequence covariation in a ribosomal protein-rRNA complex.
    GuhaThakurta D; Draper DE
    Biochemistry; 1999 Mar; 38(12):3633-40. PubMed ID: 10090750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA covariation at helix-level resolution for the identification of evolutionarily conserved RNA structure.
    Rivas E
    PLoS Comput Biol; 2023 Jul; 19(7):e1011262. PubMed ID: 37450549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Secondary structural elements exclusive to the sequences flanking ribosomal RNAs lend support to the monophyletic nature of the archaebacteria.
    Kjems J; Garrett RA
    J Mol Evol; 1990 Jul; 31(1):25-32. PubMed ID: 1696321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure.
    Leontis NB; Westhof E
    RNA; 1998 Sep; 4(9):1134-53. PubMed ID: 9740131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping the inside of the ribosome with an RNA helical ruler.
    Joseph S; Weiser B; Noller HF
    Science; 1997 Nov; 278(5340):1093-8. PubMed ID: 9353184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Secondary structure prediction for aligned RNA sequences.
    Hofacker IL; Fekete M; Stadler PF
    J Mol Biol; 2002 Jun; 319(5):1059-66. PubMed ID: 12079347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An extension of the graph theoretical approach to predict the secondary structure of large RNAs: the complex of 16S and 23S rRNAs from E. coli as a case study.
    Thanaraj TA; Kolaskar AS; Pandit MW
    Comput Appl Biosci; 1989 Jul; 5(3):211-8. PubMed ID: 2475225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A functional ribosomal RNA tertiary structure involves a base triple interaction.
    Conn GL; Gutell RR; Draper DE
    Biochemistry; 1998 Aug; 37(34):11980-8. PubMed ID: 9718323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA secondary structure prediction based on free energy and phylogenetic analysis.
    Juan V; Wilson C
    J Mol Biol; 1999 Jun; 289(4):935-47. PubMed ID: 10369773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of consensus RNA secondary structures including pseudoknots.
    Witwer C; Hofacker IL; Stadler PF
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(2):66-77. PubMed ID: 17048382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unique tertiary and neighbor interactions determine conservation patterns of Cis Watson-Crick A/G base-pairs.
    Sponer J; Mokdad A; Sponer JE; Spacková N; Leszczynski J; Leontis NB
    J Mol Biol; 2003 Jul; 330(5):967-78. PubMed ID: 12860120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ten lessons with Carl Woese about RNA and comparative analysis.
    Gutell RR
    RNA Biol; 2014; 11(3):254-72. PubMed ID: 24713659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Higher order structural elements in ribosomal RNAs: pseudo-knots and the use of noncanonical pairs.
    Gutell RR; Woese CR
    Proc Natl Acad Sci U S A; 1990 Jan; 87(2):663-7. PubMed ID: 2300554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identity and geometry of a base triple in 16S rRNA determined by comparative sequence analysis and molecular modeling.
    Babin P; Dolan M; Wollenzien P; Gutell RR
    RNA; 1999 Nov; 5(11):1430-9. PubMed ID: 10580471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A quantitative map of nucleotide substitution rates in bacterial rRNA.
    Van de Peer Y; Chapelle S; De Wachter R
    Nucleic Acids Res; 1996 Sep; 24(17):3381-91. PubMed ID: 8811093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure detection through automated covariance search.
    Winker S; Overbeek R; Woese CR; Olsen GJ; Pfluger N
    Comput Appl Biosci; 1990 Oct; 6(4):365-71. PubMed ID: 2257498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive analysis of the pre-ribosomal RNA maturation pathway in a methanoarchaeon exposes the conserved circularization and linearization mode in archaea.
    Qi L; Li J; Jia J; Yue L; Dong X
    RNA Biol; 2020 Oct; 17(10):1427-1441. PubMed ID: 32449429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting U-turns in ribosomal RNA with comparative sequence analysis.
    Gutell RR; Cannone JJ; Konings D; Gautheret D
    J Mol Biol; 2000 Jul; 300(4):791-803. PubMed ID: 10891269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction and analysis of base-paired regions of the 16S rRNA in the 30S ribosomal subunit determined by constraint satisfaction molecular modelling.
    Dolan MA; Babin P; Wollenzien P
    J Mol Graph Model; 2001; 19(6):495-513. PubMed ID: 11552678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.