These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22724009)

  • 41. Structure and dynamics of ribosomal RNA.
    Woodson SA; Leontis NB
    Curr Opin Struct Biol; 1998 Jun; 8(3):294-300. PubMed ID: 9666324
    [TBL] [Abstract][Full Text] [Related]  

  • 42. G.U base pairing motifs in ribosomal RNA.
    Gautheret D; Konings D; Gutell RR
    RNA; 1995 Oct; 1(8):807-14. PubMed ID: 7493326
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ribosomal RNAs are tolerant toward genetic insertions: evolutionary origin of the expansion segments.
    Yokoyama T; Suzuki T
    Nucleic Acids Res; 2008 Jun; 36(11):3539-51. PubMed ID: 18456707
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tensor decomposition reveals concurrent evolutionary convergences and divergences and correlations with structural motifs in ribosomal RNA.
    Muralidhara C; Gross AM; Gutell RR; Alter O
    PLoS One; 2011; 6(4):e18768. PubMed ID: 21625625
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 A resolution.
    Dube P; Bacher G; Stark H; Mueller F; Zemlin F; van Heel M; Brimacombe R
    J Mol Biol; 1998 Jun; 279(2):403-21. PubMed ID: 9642046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides.
    Dryden SC; Kaplan S
    Nucleic Acids Res; 1990 Dec; 18(24):7267-77. PubMed ID: 1701878
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The 16S-like, 5.8S and 23S-like rRNAs of the two varieties of Cryptococcus neoformans: sequence, secondary structure, phylogenetic analysis and restriction fragment polymorphisms.
    Fan M; Currie BP; Gutell RR; Ragan MA; Casadevall A
    J Med Vet Mycol; 1994; 32(3):163-80. PubMed ID: 7525916
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Base pairing constraints drive structural epistasis in ribosomal RNA sequences.
    Dutheil JY; Jossinet F; Westhof E
    Mol Biol Evol; 2010 Aug; 27(8):1868-76. PubMed ID: 20211929
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure and function of ribosomal RNA.
    Noller HF; Green R; Heilek G; Hoffarth V; Hüttenhofer A; Joseph S; Lee I; Lieberman K; Mankin A; Merryman C
    Biochem Cell Biol; 1995; 73(11-12):997-1009. PubMed ID: 8722015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resurrection of an ancestral 5S rRNA.
    Lu Q; Fox GE
    BMC Evol Biol; 2011 Jul; 11():218. PubMed ID: 21781330
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A protonated base pair participating in rRNA tertiary structural interactions.
    Kubarenko AV; Sergiev PV; Bogdanov AA; Brimacombe R; Dontsova OA
    Nucleic Acids Res; 2001 Dec; 29(24):5067-70. PubMed ID: 11812838
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sequence and characterisation of a ribosomal RNA operon from Agrobacterium vitis.
    Otten L; De Ruffray P; de Lajudie P; Michot B
    Mol Gen Genet; 1996 Apr; 251(1):99-107. PubMed ID: 8628253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of a structural motif of 23S rRNA interacting with 5S rRNA.
    Ko J; Lee Y; Park I; Cho B
    FEBS Lett; 2001 Nov; 508(3):300-4. PubMed ID: 11728439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nucleotide sequences of the spacer-1, spacer-2 and trailer regions of the rrn operons and secondary structures of precursor 23S rRNAs and precursor 5S rRNAs of slow-growing mycobacteria.
    Ji YE; Kempsell KE; Colston MJ; Cox RA
    Microbiology (Reading); 1994 Jul; 140 ( Pt 7)():1763-73. PubMed ID: 7521248
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Organization of ribosomal RNA genes from a Loofah witches' broom phytoplasma.
    Ho KC; Tsai CC; Chung TL
    DNA Cell Biol; 2001 Feb; 20(2):115-22. PubMed ID: 11244569
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNA covariation at helix-level resolution for the identification of evolutionarily conserved RNA structure.
    Rivas E
    bioRxiv; 2023 Apr; ():. PubMed ID: 37131783
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The 5S rRNA and the rRNA intergenic spacer of the two varieties of Cryptococcus neoformans.
    Fan M; Chen LC; Ragan MA; Gutell RR; Warner JR; Currie BP; Casadevall A
    J Med Vet Mycol; 1995; 33(4):215-21. PubMed ID: 8531018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of the three ribosomal RNA operons rrnA, rrnB, and rrnC, from Brucella melitensis.
    Bricker BJ
    Gene; 2000 Sep; 255(1):117-26. PubMed ID: 10974571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RNAMotif, an RNA secondary structure definition and search algorithm.
    Macke TJ; Ecker DJ; Gutell RR; Gautheret D; Case DA; Sampath R
    Nucleic Acids Res; 2001 Nov; 29(22):4724-35. PubMed ID: 11713323
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Studies on the ribosomal RNA operons of Listeria monocytogenes.
    Thompson DE; Balsdon JT; Cai J; Collins MD
    FEMS Microbiol Lett; 1992 Sep; 75(2-3):219-24. PubMed ID: 1383082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.