These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22724046)

  • 1. Polymorphisms in heterocyclic aromatic amines metabolism-related genes are associated with colorectal adenoma risk.
    Eichholzer M; Rohrmann S; Barbir A; Hermann S; Teucher B; Kaaks R; Linseisen J
    Int J Mol Epidemiol Genet; 2012; 3(2):96-106. PubMed ID: 22724046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic polymorphisms in heterocyclic amine metabolism and risk of colorectal adenomas.
    Ishibe N; Sinha R; Hein DW; Kulldorff M; Strickland P; Fretland AJ; Chow WH; Kadlubar FF; Lang NP; Rothman N
    Pharmacogenetics; 2002 Mar; 12(2):145-50. PubMed ID: 11875368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of phenotypes in heterocyclic aromatic amine (HCA) metabolism-related genes on the association of HCA intake with the risk of colorectal adenomas.
    Barbir A; Linseisen J; Hermann S; Kaaks R; Teucher B; Eichholzer M; Rohrmann S
    Cancer Causes Control; 2012 Sep; 23(9):1429-42. PubMed ID: 22740027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of NAT1 and NAT2 genetic polymorphisms on colorectal cancer risk associated with exposure to tobacco smoke and meat consumption.
    Lilla C; Verla-Tebit E; Risch A; Jäger B; Hoffmeister M; Brenner H; Chang-Claude J
    Cancer Epidemiol Biomarkers Prev; 2006 Jan; 15(1):99-107. PubMed ID: 16434594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cigarette smoking, N-acetyltransferase genes and the risk of advanced colorectal adenoma.
    Moslehi R; Chatterjee N; Church TR; Chen J; Yeager M; Weissfeld J; Hein DW; Hayes RB
    Pharmacogenomics; 2006 Sep; 7(6):819-29. PubMed ID: 16981843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meat intake, heterocyclic amine exposure, and metabolizing enzyme polymorphisms in relation to colorectal polyp risk.
    Shin A; Shrubsole MJ; Rice JM; Cai Q; Doll MA; Long J; Smalley WE; Shyr Y; Sinha R; Ness RM; Hein DW; Zheng W
    Cancer Epidemiol Biomarkers Prev; 2008 Feb; 17(2):320-9. PubMed ID: 18268115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms, and colorectal cancer risk in the multiethnic cohort study.
    Nöthlings U; Yamamoto JF; Wilkens LR; Murphy SP; Park SY; Henderson BE; Kolonel LN; Le Marchand L
    Cancer Epidemiol Biomarkers Prev; 2009 Jul; 18(7):2098-106. PubMed ID: 19549810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of association between the polyadenylation polymorphism in the NAT1 (acetyltransferase 1) gene and colorectal adenomas.
    Probst-Hensch NM; Haile RW; Li DS; Sakamoto GT; Louie AD; Lin BK; Frankl HD; Lee ER; Lin HJ
    Carcinogenesis; 1996 Oct; 17(10):2125-9. PubMed ID: 8895478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meat-related mutagen exposure, xenobiotic metabolizing gene polymorphisms and the risk of advanced colorectal adenoma and cancer.
    Gilsing AM; Berndt SI; Ruder EH; Graubard BI; Ferrucci LM; Burdett L; Weissfeld JL; Cross AJ; Sinha R
    Carcinogenesis; 2012 Jul; 33(7):1332-9. PubMed ID: 22552404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphisms of cytochrome P4501A2 and N-acetyltransferase genes, smoking, and risk of pancreatic cancer.
    Li D; Jiao L; Li Y; Doll MA; Hein DW; Bondy ML; Evans DB; Wolff RA; Lenzi R; Pisters PW; Abbruzzese JL; Hassan MM
    Carcinogenesis; 2006 Jan; 27(1):103-11. PubMed ID: 15987714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A prospective study of N-acetyltransferase genotype, red meat intake, and risk of colorectal cancer.
    Chen J; Stampfer MJ; Hough HL; Garcia-Closas M; Willett WC; Hennekens CH; Kelsey KT; Hunter DJ
    Cancer Res; 1998 Aug; 58(15):3307-11. PubMed ID: 9699660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GSTP1 and GSTA1 polymorphisms interact with cruciferous vegetable intake in colorectal adenoma risk.
    Tijhuis MJ; Wark PA; Aarts JM; Visker MH; Nagengast FM; Kok FJ; Kampman E
    Cancer Epidemiol Biomarkers Prev; 2005 Dec; 14(12):2943-51. PubMed ID: 16365014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk of colorectal adenomas in relation to meat consumption, meat preparation, and genetic susceptibility in a Dutch population.
    Tiemersma EW; Voskuil DW; Bunschoten A; Hogendoorn EA; Witteman BJ; Nagengast FM; Glatt H; Kok FJ; Kampman E
    Cancer Causes Control; 2004 Apr; 15(3):225-36. PubMed ID: 15090717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary intake of heterocyclic amines, meat-derived mutagenic activity, and risk of colorectal adenomas.
    Sinha R; Kulldorff M; Chow WH; Denobile J; Rothman N
    Cancer Epidemiol Biomarkers Prev; 2001 May; 10(5):559-62. PubMed ID: 11352869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYP1A2 phenotypes in increasing colorectal cancer risk.
    Le Marchand L; Hankin JH; Wilkens LR; Pierce LM; Franke A; Kolonel LN; Seifried A; Custer LJ; Chang W; Lum-Jones A; Donlon T
    Cancer Epidemiol Biomarkers Prev; 2001 Dec; 10(12):1259-66. PubMed ID: 11751443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) polymorphisms in susceptibility to bladder cancer: the influence of smoking.
    Okkels H; Sigsgaard T; Wolf H; Autrup H
    Cancer Epidemiol Biomarkers Prev; 1997 Apr; 6(4):225-31. PubMed ID: 9107426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective study of NAT1 and NAT2 polymorphisms, tobacco smoking and meat consumption and risk of colorectal cancer.
    Sørensen M; Autrup H; Olsen A; Tjønneland A; Overvad K; Raaschou-Nielsen O
    Cancer Lett; 2008 Aug; 266(2):186-93. PubMed ID: 18372103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Well-done, grilled red meat increases the risk of colorectal adenomas.
    Sinha R; Chow WH; Kulldorff M; Denobile J; Butler J; Garcia-Closas M; Weil R; Hoover RN; Rothman N
    Cancer Res; 1999 Sep; 59(17):4320-4. PubMed ID: 10485479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymorphisms of glutathione-S-transferase and arylamine N-acetyltransferase enzymes and susceptibility to colorectal cancer.
    Kiss I; Németh A; Bogner B; Pajkos G; Orsós Z; Sándor J; Csejtey A; Faluhelyi Z; Rodler I; Ember I
    Anticancer Res; 2004; 24(6):3965-70. PubMed ID: 15736440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between dietary heterocyclic amine levels, genetic polymorphisms of NAT2, CYP1A1, and CYP1A2 and risk of colorectal cancer: a hospital-based case-control study in Japan.
    Kobayashi M; Otani T; Iwasaki M; Natsukawa S; Shaura K; Koizumi Y; Kasuga Y; Sakamoto H; Yoshida T; Tsugane S
    Scand J Gastroenterol; 2009; 44(8):952-9. PubMed ID: 19452301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.