These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22724498)

  • 1. Why superhydrophobicity is crucial for a water-jumping microrobot? Experimental and theoretical investigations.
    Zhao J; Zhang X; Chen N; Pan Q
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3706-11. PubMed ID: 22724498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired aquatic microrobot capable of walking on water surface like a water strider.
    Zhang X; Zhao J; Zhu Q; Chen N; Zhang M; Pan Q
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2630-6. PubMed ID: 21650460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A water-walking robot mimicking the jumping abilities of water striders.
    Yang K; Liu G; Yan J; Wang T; Zhang X; Zhao J
    Bioinspir Biomim; 2016 Oct; 11(6):066002. PubMed ID: 27767015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A miniature surface tension-driven robot using spatially elliptical moving legs to mimic a water strider's locomotion.
    Yan JH; Zhang XB; Zhao J; Liu GF; Cai HG; Pan QM
    Bioinspir Biomim; 2015 Aug; 10(4):046016. PubMed ID: 26241519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation.
    Su Y; Ji B; Huang Y; Hwang KC
    Langmuir; 2010 Dec; 26(24):18926-37. PubMed ID: 21086997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired oil strider floating at the oil/water interface supported by huge superoleophobic force.
    Liu X; Gao J; Xue Z; Chen L; Lin L; Jiang L; Wang S
    ACS Nano; 2012 Jun; 6(6):5614-20. PubMed ID: 22607241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A smart "strider" can float on both water and oils.
    Qin L; Zhao J; Lei S; Pan Q
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21355-62. PubMed ID: 25402567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BIOMECHANICS. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects.
    Koh JS; Yang E; Jung GP; Jung SP; Son JH; Lee SI; Jablonski PG; Wood RJ; Kim HY; Cho KJ
    Science; 2015 Jul; 349(6247):517-21. PubMed ID: 26228144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Buoyant force and sinking conditions of a hydrophobic thin rod floating on water.
    Liu JL; Feng XQ; Wang GF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066103. PubMed ID: 18233894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Millimeter-Scale Multilocomotion Microrobot Capable of Controlled Crawling and Jumping.
    Yun R; Liu Z; Leng J; Huang J; Yan X; Qi M
    Soft Robot; 2024 Apr; 11(2):361-370. PubMed ID: 38190294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of Dynamic Force Acted on Water Strider Leg Jumping Upward by the PVDF Film Sensor.
    Zhang L; Zhao M; Wang Z; Li Y; Huang Y; Zheng Y
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis.
    Feng XQ; Gao X; Wu Z; Jiang L; Zheng QS
    Langmuir; 2007 Apr; 23(9):4892-6. PubMed ID: 17385899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot.
    Chen Y; Wang H; Helbling EF; Jafferis NT; Zufferey R; Ong A; Ma K; Gravish N; Chirarattananon P; Kovac M; Wood RJ
    Sci Robot; 2017 Oct; 2(11):. PubMed ID: 33157886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.
    Wang G; Zeng Z; Wang H; Zhang L; Sun X; He Y; Li L; Wu X; Ren T; Xue Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26184-94. PubMed ID: 26562211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders.
    Wu X; Shi G
    J Phys Chem B; 2006 Jun; 110(23):11247-52. PubMed ID: 16771392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distance and force production during jumping in wild-type and mutant Drosophila melanogaster.
    Zumstein N; Forman O; Nongthomba U; Sparrow JC; Elliott CJ
    J Exp Biol; 2004 Sep; 207(Pt 20):3515-22. PubMed ID: 15339947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jumping from the surface of water by the long-legged fly Hydrophorus (Diptera, Dolichopodidae).
    Burrows M
    J Exp Biol; 2013 Jun; 216(Pt 11):1973-81. PubMed ID: 23430999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider.
    Watson GS; Cribb BW; Watson JA
    Acta Biomater; 2010 Oct; 6(10):4060-4. PubMed ID: 20417737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces.
    Su Y; Ji B; Zhang K; Gao H; Huang Y; Hwang K
    Langmuir; 2010 Apr; 26(7):4984-9. PubMed ID: 20092298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of the Jump Mechanism for a Biomimetic Robotic Frog.
    Fan J; Du Q; Dong Z; Zhao J; Xu T
    Biomimetics (Basel); 2022 Sep; 7(4):. PubMed ID: 36278699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.