These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 22724530)

  • 41. Semi-quantitative characterisation of ambient ultrafine aerosols resulting from emissions of coal fired power stations.
    Hinkley JT; Bridgman HA; Buhre BJ; Gupta RP; Nelson PF; Wall TF
    Sci Total Environ; 2008 Feb; 391(1):104-13. PubMed ID: 18054995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The United States Department of Energy's Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management.
    Litynski JT; Klara SM; McIlvried HG; Srivastava RD
    Environ Int; 2006 Jan; 32(1):128-44. PubMed ID: 16054694
    [TBL] [Abstract][Full Text] [Related]  

  • 43. North Carolina's Changing Energy Generation Profile and Reductions in Key Air Pollutants, 2000-2019.
    Wilkie AA; Richardson DB; Luben TJ; Serre ML; Woods CG; Daniels JL
    N C Med J; 2022; 83(4):304-310. PubMed ID: 35817451
    [No Abstract]   [Full Text] [Related]  

  • 44. The value of health damage due to sulphur dioxide emissions from coal-fired electricity generation in NSW and implications for pollution licences.
    Ewald B
    Aust N Z J Public Health; 2018 Jun; 42(3):227-229. PubMed ID: 29644782
    [No Abstract]   [Full Text] [Related]  

  • 45. Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012.
    Lu Z; Streets DG; de Foy B; Krotkov NA
    Environ Sci Technol; 2013 Dec; 47(24):13993-4000. PubMed ID: 24274462
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Switch: a planning tool for power systems with large shares of intermittent renewable energy.
    Fripp M
    Environ Sci Technol; 2012 Jun; 46(11):6371-8. PubMed ID: 22506835
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of the first phase of sulfur dioxide and nitrogen oxides provisions of the 1990 Clean Air Act: a plant-based approach.
    Freedman M; Jaggi B
    Environ Manage; 2002 Mar; 29(3):437-50. PubMed ID: 11830772
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessment of the US EPA's determination of the role for CO2 capture and storage in new fossil fuel-fired power plants.
    Clark VR; Herzog HJ
    Environ Sci Technol; 2014 Jul; 48(14):7723-9. PubMed ID: 24960207
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Contribution of nitrogen oxide and sulfur dioxide exposure from power plant emissions on respiratory symptom and disease prevalence.
    Amster ED; Haim M; Dubnov J; Broday DM
    Environ Pollut; 2014 Mar; 186():20-8. PubMed ID: 24361356
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Water use at pulverized coal power plants with postcombustion carbon capture and storage.
    Zhai H; Rubin ES; Versteeg PL
    Environ Sci Technol; 2011 Mar; 45(6):2479-85. PubMed ID: 21329343
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.
    Johnson TL; Keith DW
    J Air Waste Manag Assoc; 2001 Oct; 51(10):1452-9. PubMed ID: 11686250
    [TBL] [Abstract][Full Text] [Related]  

  • 52. State-level infrastructure and economic effects of switchgrass cofiring with coal in existing power plants for carbon mitigation.
    Morrow WR; Griffin WM; Matthews HS
    Environ Sci Technol; 2007 Oct; 41(19):6657-62. PubMed ID: 17969677
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.
    Pratson LF; Haerer D; PatiƱo-Echeverri D
    Environ Sci Technol; 2013 May; 47(9):4926-33. PubMed ID: 23496173
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Climate and Health Benefits of Rapid Coal-to-Gas Fuel Switching in the U.S. Power Sector Offset Methane Leakage and Production Cost Increases.
    Deetjen TA; Azevedo IL
    Environ Sci Technol; 2020 Sep; 54(18):11494-11505. PubMed ID: 32841565
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temporal evolution of the sulphur oxides emissions from the Greek electricity generation sector.
    Kaldellis JK; Voutsinas M; Paliatsos AG; Koronakis PS
    Environ Technol; 2004 Dec; 25(12):1371-84. PubMed ID: 15691198
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring the trend of stream sulfate concentrations as U.S. power plants shift from coal to shale gas.
    Niu X; Wen T; Brantley SL
    Environ Pollut; 2021 Sep; 284():117102. PubMed ID: 33915394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Soil acidification in China: is controlling SO2 emissions enough?
    Zhao Y; Duan L; Xing J; Larssen T; Nielsen CP; Hao J
    Environ Sci Technol; 2009 Nov; 43(21):8021-6. PubMed ID: 19924917
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mercury control costs drop.
    Cooney CM
    Environ Sci Technol; 2007 Feb; 41(4):1061-2. PubMed ID: 17593698
    [No Abstract]   [Full Text] [Related]  

  • 59. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increase in NOx emissions from Indian thermal power plants during 1996-2010: unit-based inventories and multisatellite observations.
    Lu Z; Streets DG
    Environ Sci Technol; 2012 Jul; 46(14):7463-70. PubMed ID: 22732062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.