These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 227249)

  • 21. Isoproterenol induces both cAMP- and calcium-dependent phosphorylation of phospholamban in canine heart in vivo.
    Karczewski P; Bartel S; Haase H; Krause EG
    Biomed Biochim Acta; 1987; 46(8-9):S433-9. PubMed ID: 2829866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Cyclic AMP level, dissociation of membrane-bound calmodulin and regulation of calcium transport in the heart sarcoplasmatic reticulum in circulatory hypoxia].
    Antipenko AE; Sviderskaia EV; Lyzlova SN
    Vopr Med Khim; 1985; 31(4):70-3. PubMed ID: 2996224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Changes in the cAMP-dependent phosphorylation system of myocardial sarcoplasmic reticulum components during circulatory hypoxia].
    Antipenko AE; Lyzlova SN
    Biokhimiia; 1985 Jan; 50(1):12-6. PubMed ID: 2983782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic-AMP-dependent phosphorylation of cardiac contractile proteins.
    England PJ; Pask HT; Mills D
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():383-90. PubMed ID: 6328927
    [No Abstract]   [Full Text] [Related]  

  • 25. Cardiac function and phosphorylation of contractile proteins.
    England PJ
    Philos Trans R Soc Lond B Biol Sci; 1983 Jul; 302(1108):83-90. PubMed ID: 6137011
    [No Abstract]   [Full Text] [Related]  

  • 26. Phosphorylation of phospholamban at threonine-17 in the absence and presence of beta-adrenergic stimulation in neonatal rat cardiomyocytes.
    Bartel S; Vetter D; Schlegel WP; Wallukat G; Krause EG; Karczewski P
    J Mol Cell Cardiol; 2000 Dec; 32(12):2173-85. PubMed ID: 11112993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Cause of increase in the efficiency of Ca2+ transport by fragments of sarcoplasmic reticulum from fast skeletal muscles induced by protein kinase].
    Avakian EA; Ritov VB; Kozlov IuP
    Biokhimiia; 1980 Apr; 45(4):601-8. PubMed ID: 6246973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclic adenosine monophosphate effects on the myocardium: a man who blows hot and cold with one breath.
    Katz AM
    J Am Coll Cardiol; 1983 Jul; 2(1):143-9. PubMed ID: 6304177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of calcium transport by the ATPase-phospholamban system.
    Tada M; Inui M
    J Mol Cell Cardiol; 1983 Sep; 15(9):565-75. PubMed ID: 6313949
    [No Abstract]   [Full Text] [Related]  

  • 30. Correlation between protein kinase-mediated stimulation of calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of a 22000 dalton protein.
    Kirchberger MA; Chu G
    Biochim Biophys Acta; 1976 Feb; 419(3):559-62. PubMed ID: 174731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphodiesterase protein activator stimulates calcium transport in cardiac microsomal preparations enriched in sarcoplasmic reticulum.
    Katz S; Remtulla MA
    Biochem Biophys Res Commun; 1978 Aug; 83(4):1373-9. PubMed ID: 212065
    [No Abstract]   [Full Text] [Related]  

  • 32. Cyclic adenosine monophosphate and cardiac contractility.
    Sobel BE; Mayer SE
    Circ Res; 1973 Apr; 32(4):407-14. PubMed ID: 4349741
    [No Abstract]   [Full Text] [Related]  

  • 33. [Significance of calcium metabolic disorders in myocardial pathology].
    Makolkin VI; Melkumova IS; Zaĭtseva NS
    Kardiologiia; 1981 Sep; 21(9):116-20. PubMed ID: 6273642
    [No Abstract]   [Full Text] [Related]  

  • 34. Myocardial subcellular function in shock.
    Hess ML; Krause SM
    Tex Rep Biol Med; 1979; 39():193-207. PubMed ID: 162247
    [No Abstract]   [Full Text] [Related]  

  • 35. [Proceedings: Biochemical studies of cardiac sarcoplasmic reticulum. Report 2. Relationship between cyclic AMP and calcium binding].
    Imai K; Satomi Y; Ozawa Y; Yamazaki K; Senba K
    Jpn Circ J; 1975 Jun; 39(6):721. PubMed ID: 168419
    [No Abstract]   [Full Text] [Related]  

  • 36. Effect of myocardial protein kinase modulator on adenosine 3' : 5'-monophosphate-dependent protein kinase-induced stimulation of calcium transport by cardiac sarcoplasmic reticulum.
    Tada M; Ohmori F; Nimura Y; Abe H
    J Biochem; 1977 Sep; 82(3):885-92. PubMed ID: 199585
    [No Abstract]   [Full Text] [Related]  

  • 37. [Adrenalin and myocardial inotropy].
    Chetverikova EF; Izakov VIa; Maevskiĭ EI; Vereshchagina VM
    Usp Fiziol Nauk; 1976; 7(1):67-93. PubMed ID: 181923
    [No Abstract]   [Full Text] [Related]  

  • 38. The stimulation of calcium uptake into sarcoplasmic-reticulum vesicles from rat heart by adenosine 3',5'-phosphate-dependent protein kinase [proceedings].
    Hollinworth DN; England PJ
    Biochem Soc Trans; 1978; 6(3):573-6. PubMed ID: 208890
    [No Abstract]   [Full Text] [Related]  

  • 39. [cAMP-dependent protein kinase activity and phospholamban phosphorylation of the heart in circulatory hypoxia. The effect of trypsin on the capacity for phosphorylation].
    Antipenko AE; Lyzlova SN
    Dokl Akad Nauk SSSR; 1984; 275(2):490-3. PubMed ID: 6327219
    [No Abstract]   [Full Text] [Related]  

  • 40. The molecular and ionic basis of altered myocardial contractility.
    Kones RJ
    Res Commun Chem Pathol Pharmacol; 1973 Jan; 5(1):1-84. PubMed ID: 4356588
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.